HOME
*





Intermittent Control
Intermittent control is a feedback control method which not only explains some human control systems but also has applications to control engineering. In the context of control theory, intermittent control provides a spectrum of possibilities between the two extremes of continuous-time and discrete-time control: the control signal consists of a sequence of (continuous-time) parameterised trajectories whose parameters are adjusted intermittently. It is different from discrete-time control in that the control is not constant between samples; it is different from continuous-time control in that the trajectories are reset intermittently. As a class of control theory, intermittent predictive control is more general than continuous control and provides a new paradigm incorporating continuous predictive and optimal control with intermittent, open loop (ballistic) control. There are at least three areas where intermittent control is relevant. Firstly, continuous-time model-based predictiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feedback
Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled carefully when applied to feedback systems: History Self-regulating mechanisms have existed since antiquity, and the idea of feedback had started to enter economic theory in Britain by the 18th century, but it was not at that time recognized as a universal abstraction and so did not have a name. The first ever known artificial feedback device was a float valve, for maintaining water at a constant level, invented in 270 BC in Alexandria, Egypt. This device illustrated the principle of feedback: a low water level opens the valve, the rising water then provides feedback into the system, closing the valve when the required level is reached. This then reoccurs in a circular fashion as the water level fluctuates. Centrifugal governors were ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Control Engineering
Control engineering or control systems engineering is an engineering discipline that deals with control systems, applying control theory to design equipment and systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering and mechanical engineering at many institutions around the world. The practice uses sensors and detectors to measure the output performance of the process being controlled; these measurements are used to provide corrective feedback helping to achieve the desired performance. Systems designed to perform without requiring human input are called automatic control systems (such as cruise control for regulating the speed of a car). Multi-disciplinary in nature, control systems engineering activities focus on implementation of control systems mainly derived by mathematical modeling of a diverse range of systems. Overview Modern day control engineering is a relatively new field of s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Control Theory
Control theory is a field of mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any ''delay'', ''overshoot'', or ''steady-state error'' and ensuring a level of control stability; often with the aim to achieve a degree of optimality. To do this, a controller with the requisite corrective behavior is required. This controller monitors the controlled process variable (PV), and compares it with the reference or set point (SP). The difference between actual and desired value of the process variable, called the ''error'' signal, or SP-PV error, is applied as feedback to generate a control action to bring the controlled process variable to the same value as the set point. Other aspects which are also studied are controllability and observability. Control theory is used in control system eng ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero-order Hold
The zero-order hold (ZOH) is a mathematical model of the practical signal reconstruction done by a conventional digital-to-analog converter (DAC). That is, it describes the effect of converting a discrete-time signal to a continuous-time signal by holding each sample value for one sample interval. It has several applications in electrical communication. Time-domain model A zero-order hold reconstructs the following continuous-time waveform from a sample sequence ''x'' 'n'' assuming one sample per time interval ''T'': x_(t)\,= \sum_^ x cdot \mathrm \left(\frac \right) where \mathrm(\cdot) is the rectangular function. The function \mathrm \left(\frac \right) is depicted in Figure 1, and x_(t) is the piecewise-constant signal depicted in Figure 2. Frequency-domain model The equation above for the output of the ZOH can also be modeled as the output of a linear time-invariant filter with impulse response equal to a rect function, and with input being a sequence of dirac im ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kenneth Craik
Kenneth James William Craik (; 1914 – 1945) was a Scottish philosopher and psychologist. Life He was born in Edinburgh on 29 March 1914, the son of James Craik, a solicitor. The family lived at 13 Abercromby Place in Edinburgh's Second New Town (previously the home of William Trotter). He was educated at Edinburgh Academy then studied philosophy at the University of Edinburgh. He received his doctorate from Cambridge University in 1940. He then had a fellowship to St John's College, Cambridge in 1941, where he worked with Magdalen Dorothea Vernon and published papers with her about dark adaptation in 1941 and 1943. He was appointed to be the first director of the Medical Research Council's Cambridge-based Applied Psychology Unit in 1944. During the Second World War he served in the fire-fighting sections of the Civil Defence. Together with Gordon Butler Iles he made major advances on flight simulators for the RAF and did major studies on the effects of fatigue on pilots ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Psychological Refractory Period
The term psychological refractory period (PRP) refers to the period of time during which the response to a second stimulus is significantly slowed because a first stimulus is still being processed. This delay in response time when one is required to divide attention can exhibit a negative effect that is evident in many fields of study. The PRP can be used to investigate many areas of research that study processes which require divided attention, such as reading aloud, language, or driving and talking on the phone. PRP effects related to personality, age, and level of alcohol or caffeine intake have also been investigated. Methods PRP is a product of the psychological refractory period paradigm, a paradigm in which two different stimuli are presented in rapid succession, each requiring a fast response. Stimulus onset asynchrony, the time that lapses between the presentations of the two stimuli, acts as the '' independent variable'' in this paradigm, and the reaction time to the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Control Engineering
Control engineering or control systems engineering is an engineering discipline that deals with control systems, applying control theory to design equipment and systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering and mechanical engineering at many institutions around the world. The practice uses sensors and detectors to measure the output performance of the process being controlled; these measurements are used to provide corrective feedback helping to achieve the desired performance. Systems designed to perform without requiring human input are called automatic control systems (such as cruise control for regulating the speed of a car). Multi-disciplinary in nature, control systems engineering activities focus on implementation of control systems mainly derived by mathematical modeling of a diverse range of systems. Overview Modern day control engineering is a relatively new field of s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Networked Control System
A networked control system (NCS) is a control system wherein the control loops are closed through a communication network. The defining feature of an NCS is that control and feedback signals are exchanged among the system's components in the form of information packages through a network. Overview The functionality of a typical NCS is established by the use of four basic elements: # Sensors, to acquire information, # Controllers, to provide decision and commands, # Actuators, to perform the control commands and # Communication network, to enable exchange of information. The most important feature of an NCS is that it connects cyberspace to physical space enabling the execution of several tasks from long distance. In addition, NCSs eliminate unnecessary wiring reducing the complexity and the overall cost in designing and implementing the control systems. They can also be easily modified or upgraded by adding sensors, actuators, and controllers to them with relatively low cost and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]