HOME
*



picture info

Interference Colour Chart
In optical mineralogy an interference colour chart, first developed by Auguste Michel-Lévy, is a tool to identify minerals in thin section using a petrographic microscope. With a known thickness of the thin section, minerals have specific and predictable colours in cross- polarized light, and this chart can help identify minerals. The colours are produced by the difference in speed in the fast and slow rays, also known as birefringence. When using the chart, it is important to remember these tips: * Isotropic and opaque (metallic) minerals cannot be identified this way. *The stage of the microscope should be rotated until maximum colour is found, and therefore, the maximum birefringence. *Each mineral, depending on the orientation, may not exhibit the maximum birefringence. It is important to sample a number of similar minerals in order to get the best value of birefringence. *Uniaxial minerals can look isotropic (always extinct) if the mineral is cut perpendicular to the opti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optical Mineralogy
Optical mineralogy is the study of minerals and rocks by measuring their optical properties. Most commonly, rock and mineral samples are prepared as thin sections or grain mounts for study in the laboratory with a petrographic microscope. Optical mineralogy is used to identify the mineralogical composition of geological materials in order to help reveal their origin and evolution. Some of the properties and techniques used include: * Refractive index * Birefringence * Michel-Lévy Interference colour chart * Pleochroism * Extinction angle * Conoscopic interference pattern (Interference figure) * Becke line test * Optical relief * Sign of elongation (Length fast vs. length slow) * Wave plate History William Nicol, whose name is associated with the creation of the Nicol prism, is likely the first to prepare thin slices of mineral substances, and his methods were applied by Henry Thronton Maire Witham (1831) to the study of plant petrifactions. This method, of significant im ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Auguste Michel-Lévy
Auguste Michel-Lévy (7 August 184427 September 1911) was a French geologist. He was born in Paris. Biography He became inspector-general of mines, and director of the Geological Survey of France. He was distinguished for his researches on extrusive rocks and their microscopic structure and origins. He employed the polarizing microscope early on for the identification of minerals.Auguste MICHEL-LEVY (1844-1911)
Annales.org
In his many contributions to scientific journals he described the group, and dealt with pegmatites, variolites,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mineral
In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid chemical compound with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2011): Minerals'; p. 1. In the series ''Geology: Landforms, Minerals, and Rocks''. Rosen Publishing Group. The geological definition of mineral normally excludes compounds that occur only in living organisms. However, some minerals are often biogenic (such as calcite) or are organic compounds in the sense of chemistry (such as mellite). Moreover, living organisms often synthesize inorganic minerals (such as hydroxylapatite) that also occur in rocks. The concept of mineral is distinct from rock, which is any bulk solid geologic material that is relatively homogeneous at a large enough scale. A rock may consist of one type of mineral, or may be an aggregate of two or more different types of minerals, spacially segregated into distinct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Thin Section
In optical mineralogy and petrography, a thin section (or petrographic thin section) is a thin slice of a rock or mineral sample, prepared in a laboratory, for use with a polarizing petrographic microscope, electron microscope and electron microprobe. A thin sliver of rock is cut from the sample with a diamond saw and ground optically flat. It is then mounted on a glass slide and then ground smooth using progressively finer abrasive grit until the sample is only 30 μm thick. The method uses the Michel-Lévy interference colour chart to determine thickness, typically using quartz as the thickness gauge because it is one of the most abundant minerals. When placed between two polarizing filters set at right angles to each other, the optical properties of the minerals in the thin section alter the colour and intensity of the light as seen by the viewer. As different minerals have different optical properties, most rock forming minerals can be easily identified. Plagioclase for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Petrographic Microscope
A petrographic microscope is a type of optical microscope used in petrology and optical mineralogy to identify rocks and minerals in thin sections. The microscope is used in optical mineralogy and petrography, a branch of petrology which focuses on detailed descriptions of rocks. The method is called "polarized light microscopy" (PLM). __TOC__ Description Depending on the grade of observation required, petrological microscopes are derived from conventional brightfield microscopes of similar basic capabilities by: * Adding a Nicol prism polarizer filter to the light path beneath the sample slide * Replacing the normal stage with a circular rotating stage (typically graduated with vernier scales for reading orientations to better than 1 degree of arc) * Adding a second rotatable and removable Nicol prism filter, called the analyzer, to the light path between objective and eyepiece * Adding a phase telescope, also known as a Bertrand lens, which allows the viewer to see ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polarized Light
Polarization (also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string ''(see image)''; for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves (shear waves) in solids. An electromagnetic wave ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birefringence
Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress. Birefringence is responsible for the phenomenon of double refraction whereby a ray of light, when incident upon a birefringent material, is split by polarization into two rays taking slightly different paths. This effect was first described by Danish scientist Rasmus Bartholin in 1669, who observed it in calcite, a crystal having one of the strongest birefringences. In the 19th century Augustin-Jean Fresnel described the phenomenon in terms of polarization, understanding light as a wave with field components in transverse polariz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isotropic
Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe situations where properties vary systematically, dependent on direction. Isotropic radiation has the same intensity regardless of the direction of measurement, and an isotropic field exerts the same action regardless of how the test particle is oriented. Mathematics Within mathematics, ''isotropy'' has a few different meanings: ; Isotropic manifolds: A manifold is isotropic if the geometry on the manifold is the same regardless of direction. A similar concept is homogeneity. ; Isotropic quadratic form: A quadratic form ''q'' is said to be isotropic if there is a non-zero vector ''v'' such that ; such a ''v'' is an isotropic vector or null vector. In complex geometry, a line through the origin in the direction of an isotropic vector is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Optic Axis Of A Crystal
An optic axis of a crystal is a direction in which a ray of transmitted light suffers no birefringence (double refraction). An optic axis is a direction rather than a single line: all rays that are parallel to that direction exhibit the same lack of birefringence. Crystals may have a single optic axis, in which case they are ''uniaxial'', or two different optic axes, in which case they are ''biaxial''. Non-crystalline materials generally have no birefringence and thus, no optic axis. A uniaxial crystal (e.g. calcite, quartz) is isotropic within the plane orthogonal to the optic axis of the crystal. Explanation The internal structure of crystals (the specific structure of the crystal lattice, and the specific atoms or molecules of which it is composed) causes the speed of light in the material, and therefore the material's refractive index, to depend on both the light's direction of propagation and its polarization. The dependence on polarization causes birefringence, in which two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conoscopic Interference Pattern
A conoscopic interference pattern or interference figure is a pattern of birefringent colours crossed by dark bands (or ''isogyres''), which can be produced using a geological petrographic microscope for the purposes of mineral identification and investigation of mineral optical and chemical properties. The figures are produced by optical interference when diverging light rays travel through an optically non-isotropic substance - that is, one in which the substance's refractive index varies in different directions within it. The figure can be thought of as a "map" of how the birefringence of a mineral would vary with viewing angle away from perpendicular to the slide, where the central colour is the birefringence seen looking straight down, and the colours further from the centre equivalent to viewing the mineral at ever increasing angles from perpendicular. The dark bands correspond to positions where optical extinction (apparent isotropy) would be seen. In other words, the interfe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optical Mineralogy
Optical mineralogy is the study of minerals and rocks by measuring their optical properties. Most commonly, rock and mineral samples are prepared as thin sections or grain mounts for study in the laboratory with a petrographic microscope. Optical mineralogy is used to identify the mineralogical composition of geological materials in order to help reveal their origin and evolution. Some of the properties and techniques used include: * Refractive index * Birefringence * Michel-Lévy Interference colour chart * Pleochroism * Extinction angle * Conoscopic interference pattern (Interference figure) * Becke line test * Optical relief * Sign of elongation (Length fast vs. length slow) * Wave plate History William Nicol, whose name is associated with the creation of the Nicol prism, is likely the first to prepare thin slices of mineral substances, and his methods were applied by Henry Thronton Maire Witham (1831) to the study of plant petrifactions. This method, of significant im ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]