HOME
*





Infrared Excess
An infrared excess is a measurement of an astronomical source, typically a star, that in their spectral energy distribution has a greater measured infrared flux than expected by assuming the star is a blackbody radiator. Infrared excesses are often the result of circumstellar dust heated by starlight and reemitted at longer wavelengths. They are common in young stellar objects and evolved stars on the asymptotic giant branch or older. In addition, monitoring for infrared excess emission from stellar systems is one possible method that could enable a search for large-scale stellar engineering projects of a hypothetical extraterrestrial civilization; for example a Dyson sphere A Dyson sphere is a hypothetical megastructure that completely encompasses a star and captures a large percentage of its solar power output. The concept is a thought experiment that attempts to explain how a spacefaring civilization would meet ... or Dyson swarm. This infrared excess would be the o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Star
A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sky, night, but their immense distances from Earth make them appear as fixed stars, fixed points of light. The most prominent stars have been categorised into constellations and asterism (astronomy), asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated to stars. Only about 4,000 of these stars are visible to the naked eye, all within the Milky Way galaxy. A star's life star formation, begins with the gravitational collapse of a gaseous nebula of material composed primarily of hydrogen, along with helium and trace amounts of heavier elements. Its stellar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectral Energy Distribution
A spectral energy distribution (SED) is a plot of energy versus frequency or wavelength of light (not to be confused with a 'spectrum' of flux density vs frequency or wavelength). It is used in many branches of astronomy to characterize astronomical sources. For example, in radio astronomy they are used to show the emission from synchrotron radiation, free-free emission and other emission mechanisms. In infrared astronomy, SEDs can be used to classify young stellar objects. Detector for spectral energy distribution The count rates observed from a given astronomical radiation source have no simple relationship to the flux from that source, such as might be incident at the top of the Earth's atmosphere. This lack of a simple relationship is due in no small part to the complex properties of radiation detectors. These detector properties can be divided into *those that merely attenuate the beam, including *#residual atmosphere between source and detector, *#absorption in the d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infrared
Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around 1 millimeter (300 GHz) to the nominal red edge of the visible spectrum, around 700  nanometers (430  THz). Longer IR wavelengths (30 μm-100 μm) are sometimes included as part of the terahertz radiation range. Almost all black-body radiation from objects near room temperature is at infrared wavelengths. As a form of electromagnetic radiation, IR propagates energy and momentum, exerts radiation pressure, and has properties corresponding to both those of a wave and of a particle, the photon. It was long known that fires emit invisible heat; in 1681 the pioneering experimenter Edme Mariotte showed that glass, though transparent to sunlight, obstructed radiant heat. In 1800 the astronomer Sir William Herschel discovered ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radiative Flux
Radiative flux, also known as radiative flux density or radiation flux (or sometimes power flux density), is the amount of Power (physics), power radiated through a given area, in the form of photons or other elementary particles, typically measured in W/m2. It is used in astronomy to determine the Apparent magnitude, magnitude and Stellar classification, spectral class of a star and in meteorology to determine the intensity of the convection in the planetary boundary layer. Radiative flux also acts as a generalization of heat flux, which is equal to the radiative flux when restricted to the infrared spectrum. When radiative flux is incident on a surface, it is often called irradiance. Flux emitted from a surface may be called radiant exitance or radiant emittance. The ratio of irradiance reflected to the irradiance received by a surface is called albedo. Shortwave radiation flux Shortwave flux is a result of specular and diffuse reflection of incident shortwave radiation by the un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Blackbody Radiation
Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spectrum of wavelengths, inversely related to intensity, that depend only on the body's temperature, which is assumed, for the sake of calculations and theory, to be uniform and constant., Chapter 13. A perfectly insulated enclosure which is in thermal equilibrium internally contains black-body radiation, and will emit it through a hole made in its wall, provided the hole is small enough to have a negligible effect upon the equilibrium. The thermal radiation spontaneously emitted by many ordinary objects can be approximated as black-body radiation. Of particular importance, although planets and stars (including the Earth and Sun) are neither in thermal equilibrium with their surroundings nor perfect black bodies, black-body radiation is sti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Circumstellar Dust
Circumstellar dust is cosmic dust around a star. It can be in the form of a spherical shell or a disc, e.g. an accretion disk. Circumstellar dust can be responsible for significant extinction and is usually the source of an infrared excess for stars that have it. For some evolved stars on the asymptotic giant branch, the dust is composed of silicate emissions while others contain the presence of other dust components. According to a study, it is still uncertain whether the dust is a result of crystalline silicate or polycyclic aromatic hydrocarbon. However, recent observations revealed that Vega-type stars display broad silicate emission. It is suggested that the circumstellar dust components can depend on the evolutionary stage of a star and is related to the changes in its physical conditions. The motion of circumstellar dust is governed by forces due to stellar gravity and radiation pressure. Circumstellar dust in the Solar System causes the zodiacal light. See also * Accr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Young Stellar Object
Young stellar object (YSO) denotes a star in its early stage of evolution. This class consists of two groups of objects: protostars and pre-main-sequence stars. Classification by spectral energy distribution A star forms by accumulation of material that falls in to a protostar from a circumstellar disk or envelope. Material in the disk is cooler than the surface of the protostar, so it radiates at longer wavelengths of light producing excess infrared emission. As material in the disk is depleted, the infrared excess decreases. Thus, YSOs are usually classified into evolutionary stages based on the slope of their spectral energy distribution in the mid-infrared, using a scheme introduced by Lada (1987). He proposed three classes (I, II and III), based on the values of intervals of spectral index \alpha \,: \alpha=\frac. Here \lambda \, is wavelength, and F_\lambda is flux density. The \alpha \, is calculated in the wavelength interval of 2.2–20 m ( near- and mid-infrared reg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asymptotic Giant Branch
The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) late in their lives. Observationally, an asymptotic-giant-branch star will appear as a bright red giant with a luminosity ranging up to thousands of times greater than the Sun. Its interior structure is characterized by a central and largely inert core of carbon and oxygen, a shell where helium is undergoing fusion to form carbon (known as helium burning), another shell where hydrogen is undergoing fusion forming helium (known as hydrogen burning), and a very large envelope of material of composition similar to main-sequence stars (except in the case of carbon stars). Stellar evolution When a star exhausts the supply of hydrogen by nuclear fusion processes in its core, the core contracts and its temperature increases, causing the outer l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Post-AGB
The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) late in their lives. Observationally, an asymptotic-giant-branch star will appear as a bright red giant with a luminosity ranging up to thousands of times greater than the Sun. Its interior structure is characterized by a central and largely inert core of carbon and oxygen, a shell where helium is undergoing fusion to form carbon (known as helium burning), another shell where hydrogen is undergoing fusion forming helium (known as hydrogen burning), and a very large envelope of material of composition similar to main-sequence stars (except in the case of carbon stars). Stellar evolution When a star exhausts the supply of hydrogen by nuclear fusion processes in its core, the core contracts and its temperature increases, causing the outer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dyson Sphere
A Dyson sphere is a hypothetical megastructure that completely encompasses a star and captures a large percentage of its solar power output. The concept is a thought experiment that attempts to explain how a spacefaring civilization would meet its energy requirements once those requirements exceed what can be generated from the home planet's resources alone. Because only a tiny fraction of a star's energy emissions reaches the surface of any orbiting planet, building structures encircling a star would enable a civilization to harvest far more energy. The first contemporary description of the structure was by Olaf Stapledon in his science fiction novel '' Star Maker'' (1937), in which he described "every solar system... surrounded by a gauze of light-traps, which focused the escaping solar energy for intelligent use". The concept was later popularized by Freeman Dyson in his 1960 paper "Search for Artificial Stellar Sources of Infrared Radiation". Dyson speculated that such stru ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dyson Swarm
A Dyson sphere is a hypothetical megastructure that completely encompasses a star and captures a large percentage of its solar power output. The concept is a thought experiment that attempts to explain how a spacefaring civilization would meet its energy requirements once those requirements exceed what can be generated from the home planet's resources alone. Because only a tiny fraction of a star's energy emissions reaches the surface of any orbiting planet, building structures encircling a star would enable a civilization to harvest far more energy. The first contemporary description of the structure was by Olaf Stapledon in his science fiction novel ''Star Maker'' (1937), in which he described "every solar system... surrounded by a gauze of light-traps, which focused the escaping solar energy for intelligent use". The concept was later popularized by Freeman Dyson in his 1960 paper "Search for Artificial Stellar Sources of Infrared Radiation". Dyson speculated that such struc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]