HOME
*



picture info

Iitaka Dimension
In algebraic geometry, the Iitaka dimension of a line bundle ''L'' on an algebraic variety ''X'' is the dimension of the image of the rational map to projective space determined by ''L''. This is 1 less than the dimension of the section ring of ''L'' :R(X, L) = \bigoplus_^\infty H^0(X, L^). The Iitaka dimension of ''L'' is always less than or equal to the dimension of ''X''. If ''L'' is not effective, then its Iitaka dimension is usually defined to be -\infty or simply said to be negative (some early references define it to be −1). The Iitaka dimension of ''L'' is sometimes called L-dimension, while the dimension of a divisor D is called D-dimension. The Iitaka dimension was introduced by . Big line bundles A line bundle is big if it is of maximal Iitaka dimension, that is, if its Iitaka dimension is equal to the dimension of the underlying variety. Bigness is a birational invariant: If is a birational morphism of varieties, and if ''L'' is a big line bundle on ''X'', then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Smooth Variety
In algebraic geometry, a smooth scheme over a field is a scheme which is well approximated by affine space near any point. Smoothness is one way of making precise the notion of a scheme with no singular points. A special case is the notion of a smooth variety over a field. Smooth schemes play the role in algebraic geometry of manifolds in topology. Definition First, let ''X'' be an affine scheme of finite type over a field ''k''. Equivalently, ''X'' has a closed immersion into affine space ''An'' over ''k'' for some natural number ''n''. Then ''X'' is the closed subscheme defined by some equations ''g''1 = 0, ..., ''g''''r'' = 0, where each ''gi'' is in the polynomial ring ''k'' 'x''1,..., ''x''''n'' The affine scheme ''X'' is smooth of dimension ''m'' over ''k'' if ''X'' has dimension at least ''m'' in a neighborhood of each point, and the matrix of derivatives (∂''g''''i''/∂''x''''j'') has rank at least ''n''−''m'' everywhere on ''X''. (It follows that ''X'' has dime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimal Model Program
In algebraic geometry, the minimal model program is part of the birational classification of algebraic varieties. Its goal is to construct a birational model of any complex projective variety which is as simple as possible. The subject has its origins in the classical birational geometry of surfaces studied by the Italian school, and is currently an active research area within algebraic geometry. Outline The basic idea of the theory is to simplify the birational classification of varieties by finding, in each birational equivalence class, a variety which is "as simple as possible". The precise meaning of this phrase has evolved with the development of the subject; originally for surfaces, it meant finding a smooth variety X for which any birational morphism f\colon X \to X' with a smooth surface X' is an isomorphism. In the modern formulation, the goal of the theory is as follows. Suppose we are given a projective variety X, which for simplicity is assumed non-singular. There a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Variety
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined ''over'' that field. Historically the first abelian varieties to be studied were those defined over the field of complex numbers. Such abelian varieties turn out to be exactly those complex tori that can be embedded into a complex projective space. Abelian varieties defined over algebraic number fields are a special case, which is important also from the viewpoint of number theory. Localization techniques lead naturally fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Moishezon Manifold
In mathematics, a Moishezon manifold is a compact complex manifold such that the field of meromorphic functions on each component has transcendence degree equal the complex dimension of the component: :\dim_\mathbfM=a(M)=\operatorname_\mathbf\mathbf(M). Complex algebraic varieties have this property, but the converse is not true: Hironaka's example In geometry, Hironaka's example is a non-Kähler complex manifold that is a deformation of Kähler manifolds found by . Hironaka's example can be used to show that several other plausible statements holding for smooth varieties of dimension at mo ... gives a smooth 3-dimensional Moishezon manifold that is not an algebraic variety or scheme. showed that a Moishezon manifold is a projective algebraic variety if and only if it admits a Kähler metric. showed that any Moishezon manifold carries an algebraic space structure; more precisely, the category of Moishezon spaces (similar to Moishezon manifolds, but are allowed to have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fig003
The fig is the edible fruit of ''Ficus carica'', a species of small tree in the flowering plant family Moraceae. Native to the Mediterranean and western Asia, it has been cultivated since ancient times and is now widely grown throughout the world, both for its fruit and as an ornamental plant.''The Fig: its History, Culture, and Curing'', Gustavus A. Eisen, Washington, Govt. print. off., 1901 ''Ficus carica'' is the type species of the genus ''Ficus'', containing over 800 tropical and subtropical plant species. A fig plant is a small deciduous tree or large shrub growing up to tall, with smooth white bark. Its large leaves have three to five deep lobes. Its fruit (referred to as syconium, a type of multiple fruit) is tear-shaped, long, with a green skin that may ripen toward purple or brown, and sweet soft reddish flesh containing numerous crunchy seeds. The milky sap of the green parts is an irritant to human skin. In the Northern Hemisphere, fresh figs are in season from lat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fig002(new001)
The fig is the edible fruit of ''Ficus carica'', a species of small tree in the flowering plant family Moraceae. Native to the Mediterranean and western Asia, it has been cultivated since ancient times and is now widely grown throughout the world, both for its fruit and as an ornamental plant.''The Fig: its History, Culture, and Curing'', Gustavus A. Eisen, Washington, Govt. print. off., 1901 ''Ficus carica'' is the type species of the genus ''Ficus'', containing over 800 tropical and subtropical plant species. A fig plant is a small deciduous tree or large shrub growing up to tall, with smooth white bark. Its large leaves have three to five deep lobes. Its fruit (referred to as syconium, a type of multiple fruit) is tear-shaped, long, with a green skin that may ripen toward purple or brown, and sweet soft reddish flesh containing numerous crunchy seeds. The milky sap of the green parts is an irritant to human skin. In the Northern Hemisphere, fresh figs are in season from l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fig001(new03)
The fig is the edible fruit of ''Ficus carica'', a species of small tree in the flowering plant family Moraceae. Native to the Mediterranean and western Asia, it has been cultivated since ancient times and is now widely grown throughout the world, both for its fruit and as an ornamental plant.''The Fig: its History, Culture, and Curing'', Gustavus A. Eisen, Washington, Govt. print. off., 1901 ''Ficus carica'' is the type species of the genus ''Ficus'', containing over 800 tropical and subtropical plant species. A fig plant is a small deciduous tree or large shrub growing up to tall, with smooth white bark. Its large leaves have three to five deep lobes. Its fruit (referred to as syconium, a type of multiple fruit) is tear-shaped, long, with a green skin that may ripen toward purple or brown, and sweet soft reddish flesh containing numerous crunchy seeds. The milky sap of the green parts is an irritant to human skin. In the Northern Hemisphere, fresh figs are in season from lat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kodaira Dimension
In algebraic geometry, the Kodaira dimension ''κ''(''X'') measures the size of the canonical model of a projective variety ''X''. Igor Shafarevich, in a seminar introduced an important numerical invariant of surfaces with the notation ''κ''. Shigeru Iitaka extended it and defined the Kodaira dimension for higher dimensional varieties (under the name of canonical dimension), and later named it after Kunihiko Kodaira. The plurigenera The canonical bundle of a smooth algebraic variety ''X'' of dimension ''n'' over a field is the line bundle of ''n''-forms, :\,\!K_X = \bigwedge^n\Omega^1_X, which is the ''n''th exterior power of the cotangent bundle of ''X''. For an integer ''d'', the ''d''th tensor power of ''K''''X'' is again a line bundle. For ''d'' ≥ 0, the vector space of global sections ''H''0(''X'',''K''''X''''d'') has the remarkable property that it is a birational invariant of smooth projective varieties ''X''. That is, this vector space is canonically ident ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rational Normal Curve
In mathematics, the rational normal curve is a smooth, rational curve of degree in projective n-space . It is a simple example of a projective variety; formally, it is the Veronese variety when the domain is the projective line. For it is the plane conic and for it is the twisted cubic. The term "normal" refers to projective normality, not normal schemes. The intersection of the rational normal curve with an affine space is called the moment curve. Definition The rational normal curve may be given parametrically as the image of the map :\nu:\mathbf^1\to\mathbf^n which assigns to the homogeneous coordinates the value :\nu: :T\mapsto \left ^n:S^T:S^T^2:\cdots:T^n \right In the affine coordinates of the chart the map is simply :\nu:x \mapsto \left (x, x^2, \ldots, x^n \right ). That is, the rational normal curve is the closure by a single point at infinity of the affine curve :\left (x, x^2, \ldots, x^n \right ). Equivalently, rational normal curve may be understood ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Line Bundle
In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the ''tangent bundle'' is a way of organising these. More formally, in algebraic topology and differential topology, a line bundle is defined as a ''vector bundle'' of rank 1. Line bundles are specified by choosing a one-dimensional vector space for each point of the space in a continuous manner. In topological applications, this vector space is usually real or complex. The two cases display fundamentally different behavior because of the different topological properties of real and complex vector spaces: If the origin is removed from the real line, then the result is the set of 1×1 invertible real matrices, which is homotopy-equivalent to a discrete two-point space by contracting the positive and negative reals each to a point; whereas removing the origin from the complex pla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]