IBM XL Fortran
XL Fortran is the name of IBM's proprietary optimizing Fortran compiler for IBM-supported environments, including Linux for little-endian distributions and AIX. Features * Tuning for Power ISA * Fortran language standard supportXL Fortran's Fortran 2008 Compliance Statusan XL Fortran's TS 29113 Compliance Status * CUDA Fortran support * OpenMP API support * Five optimization levels (-O0,-O2,-O3,-O4,-O5) * Profile-directed feedback optimization * Interprocedural optimization and inlining * High order transformations References External links IBM Fortran Compilers family introductionProduct documentation: XL Fortran for Linux, V16.1.1Product documentation: XL Fortran for AIX, V16.1.0Community: IBM XL C, C++, and Fortran Compilers for Power servers {{DEFAULTSORT:IBM XL Fortran Compilers fortran compilers IBM software ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linux
Linux ( or ) is a family of open-source Unix-like operating systems based on the Linux kernel, an operating system kernel first released on September 17, 1991, by Linus Torvalds. Linux is typically packaged as a Linux distribution, which includes the kernel and supporting system software and libraries, many of which are provided by the GNU Project. Many Linux distributions use the word "Linux" in their name, but the Free Software Foundation uses the name "GNU/Linux" to emphasize the importance of GNU software, causing some controversy. Popular Linux distributions include Debian, Fedora Linux, and Ubuntu, the latter of which itself consists of many different distributions and modifications, including Lubuntu and Xubuntu. Commercial distributions include Red Hat Enterprise Linux and SUSE Linux Enterprise. Desktop Linux distributions include a windowing system such as X11 or Wayland, and a desktop environment such as GNOME or KDE Plasma. Distributions intended for ser ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Little-endian
In computing, endianness, also known as byte sex, is the order or sequence of bytes of a word of digital data in computer memory. Endianness is primarily expressed as big-endian (BE) or little-endian (LE). A big-endian system stores the most significant byte of a word at the smallest memory address and the least significant byte at the largest. A little-endian system, in contrast, stores the least-significant byte at the smallest address. Bi-endianness is a feature supported by numerous computer architectures that feature switchable endianness in data fetches and stores or for instruction fetches. Other orderings are generically called middle-endian or mixed-endian. Endianness may also be used to describe the order in which the bits are transmitted over a communication channel, e.g., big-endian in a communications channel transmits the most significant bits first. Bit-endianness is seldom used in other contexts. Etymology Danny Cohen introduced the terms ''big-endian' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power ISA
Power ISA is a reduced instruction set computer (RISC) instruction set architecture (ISA) currently developed by the OpenPOWER Foundation, led by IBM. It was originally developed by IBM and the now-defunct Power.org industry group. Power ISA is an evolution of the PowerPC ISA, created by the mergers of the core PowerPC ISA and the optional Book E for embedded applications. The merger of these two components in 2006 was led by Power.org founders IBM and Freescale Semiconductor. The ISA is divided into several ''categories'' which are described in a certain ''Book''. Processors implement a set of these categories as required for their task. Different classes of processors are required to implement certain categories, for example a server-class processor includes the categories: ''Base'', ''Server'', ''Floating-Point'', ''64-Bit'', etc. All processors implement the Base category. Power ISA is a RISC load/store architecture. It has multiple sets of registers: * ''32'' × 32-b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CUDA
CUDA (or Compute Unified Device Architecture) is a parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for general purpose processing, an approach called general-purpose computing on GPUs (GPGPU). CUDA is a software layer that gives direct access to the GPU's virtual instruction set and parallel computational elements, for the execution of compute kernels. CUDA is designed to work with programming languages such as C, C++, and Fortran. This accessibility makes it easier for specialists in parallel programming to use GPU resources, in contrast to prior APIs like Direct3D and OpenGL, which required advanced skills in graphics programming. CUDA-powered GPUs also support programming frameworks such as OpenMP, OpenACC and OpenCL; and HIP by compiling such code to CUDA. CUDA was created by Nvidia. When it was first introduced, the name was an acronym for Compute Unified Device Architectur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
OpenMP
OpenMP (Open Multi-Processing) is an application programming interface (API) that supports multi-platform shared-memory multiprocessing programming in C, C++, and Fortran, on many platforms, instruction-set architectures and operating systems, including Solaris, AIX, FreeBSD, HP-UX, Linux, macOS, and Windows. It consists of a set of compiler directives, library routines, and environment variables that influence run-time behavior. OpenMP is managed by the nonprofit technology consortium ''OpenMP Architecture Review Board'' (or ''OpenMP ARB''), jointly defined by a broad swath of leading computer hardware and software vendors, including Arm, AMD, IBM, Intel, Cray, HP, Fujitsu, Nvidia, NEC, Red Hat, Texas Instruments, and Oracle Corporation. OpenMP uses a portable, scalable model that gives programmers a simple and flexible interface for developing parallel applications for platforms ranging from the standard desktop computer to the supercomputer. An application built wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Profile-directed Feedback
Profile-guided optimization (PGO, sometimes pronounced as ''pogo''), also known as profile-directed feedback (PDF), and feedback-directed optimization (FDO) is a compiler optimization technique in computer programming that uses profiling to improve program runtime performance. Method Optimization techniques based on static program analysis of the source code consider code performance improvements without actually executing the program. No dynamic program analysis is performed. The analysis may even consider code within loops including the number of times the loop will execute, for example in loop unrolling. In the absence of all the run time information, static program analysis can not take into account how frequently that code section is actually executed. The first high-level compiler, introduced as the Fortran Automatic Coding System in 1957, broke the code into blocks and devised a table of the frequency each block is executed via a simulated execution of the code in a M ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Interprocedural Optimization
Interprocedural optimization (IPO) is a collection of compiler techniques used in computer programming to improve performance in programs containing many frequently used functions of small or medium length. IPO differs from other compiler optimizations because it analyzes the entire program; other optimizations look at only a single function, or even a single block of code. IPO seeks to reduce or eliminate duplicate calculations, inefficient use of memory, and to simplify iterative sequences such as loops. If there is a call to another routine that occurs within a loop, IPO analysis may determine that it is best to inline that. Additionally, IPO may re-order the routines for better memory layout and locality. IPO may also include typical compiler optimizations on a whole-program level, for example dead code elimination (DCE), which removes code that is never executed. To accomplish this, the compiler tests for branches that are never taken and removes the code in that branch. IP ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |