Hille–Yosida Theorem
   HOME
*





Hille–Yosida Theorem
In functional analysis, the Hille–Yosida theorem characterizes the generators of strongly continuous one-parameter semigroups of linear operators on Banach spaces. It is sometimes stated for the special case of contraction semigroups, with the general case being called the Feller–Miyadera–Phillips theorem (after William Feller, Isao Miyadera, and Ralph Phillips). The contraction semigroup case is widely used in the theory of Markov processes. In other scenarios, the closely related Lumer–Phillips theorem is often more useful in determining whether a given operator generates a strongly continuous contraction semigroup. The theorem is named after the mathematicians Einar Hille and Kōsaku Yosida who independently discovered the result around 1948. Formal definitions If ''X'' is a Banach space, a one-parameter semigroup of operators on ''X'' is a family of operators indexed on the non-negative real numbers ''t ∈ [0, ∞)'' such that * T(0)= I \quad * T(s+t)= T(s) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Linear Operator
In mathematics, particularly in functional analysis and topology, closed graph is a property of functions. A function between topological spaces has a closed graph if its graph is a closed subset of the product space . A related property is open graph. This property is studied because there are many theorems, known as closed graph theorems, giving conditions under which a function with a closed graph is necessarily continuous. One particularly well-known class of closed graph theorems are the closed graph theorems in functional analysis. Definitions Graphs and set-valued functions :Definition and notation: The graph of a function is the set ::. :Notation: If is a set then the power set of , which is the set of all subsets of , is denoted by or . :Definition: If and are sets, a set-valued function in on (also called a -valued multifunction on ) is a function with domain that is valued in . That is, is a function on such that for every , is a subset o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stone's Theorem On One-parameter Unitary Groups
In mathematics, Stone's theorem on one-parameter unitary groups is a basic theorem of functional analysis that establishes a one-to-one correspondence between self-adjoint operators on a Hilbert space \mathcal and one-parameter families :(U_)_ of unitary operators that are strongly continuous, i.e., :\forall t_0 \in \R, \psi \in \mathcal: \qquad \lim_ U_t(\psi) = U_(\psi), and are homomorphisms, i.e., :\forall s,t \in \R : \qquad U_ = U_t U_s. Such one-parameter families are ordinarily referred to as strongly continuous one-parameter unitary groups. The theorem was proved by , and showed that the requirement that (U_t)_ be strongly continuous can be relaxed to say that it is merely weakly measurable, at least when the Hilbert space is separable. This is an impressive result, as it allows one to define the derivative of the mapping t \mapsto U_t, which is only supposed to be continuous. It is also related to the theory of Lie groups and Lie algebras. Formal statem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lumer–Phillips Theorem
In mathematics, the Lumer–Phillips theorem, named after Günter Lumer and Ralph Phillips, is a result in the theory of strongly continuous semigroups that gives a necessary and sufficient condition for a linear operator in a Banach space to generate a contraction semigroup. Statement of the theorem Let ''A'' be a linear operator defined on a linear subspace ''D''(''A'') of the Banach space ''X''. Then ''A'' generates a contraction semigroup if and only if # ''D''(''A'') is dense in ''X'', # ''A'' is dissipative, and # ''A'' − ''λ''0''I'' is surjective for some ''λ''0> 0, where ''I'' denotes the identity operator. An operator satisfying the last two conditions is called maximally dissipative. Variants of the theorem Reflexive spaces Let ''A'' be a linear operator defined on a linear subspace ''D''(''A'') of the reflexive Banach space ''X''. Then ''A'' generates a contraction semigroup if and only if # ''A'' is dissipative, and # ''A'' −  ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Resolvent Operator
In mathematics, the resolvent formalism is a technique for applying concepts from complex analysis to the study of the spectrum of operators on Banach spaces and more general spaces. Formal justification for the manipulations can be found in the framework of holomorphic functional calculus. The resolvent captures the spectral properties of an operator in the analytic structure of the functional. Given an operator , the resolvent may be defined as : R(z;A)= (A-zI)^~. Among other uses, the resolvent may be used to solve the inhomogeneous Fredholm integral equations; a commonly used approach is a series solution, the Liouville–Neumann series. The resolvent of can be used to directly obtain information about the spectral decomposition of . For example, suppose is an isolated eigenvalue in the spectrum of . That is, suppose there exists a simple closed curve C_\lambda in the complex plane that separates from the rest of the spectrum of . Then the residue : -\frac \oint ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integers
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is Countable set, countably infinite. An integer may be regarded as a real number that can be written without a fraction, fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest Group (mathematics), group and the smallest ring (mathematics), ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Resolvent Set
In linear algebra and operator theory, the resolvent set of a linear operator is a set of complex numbers for which the operator is in some sense "well-behaved". The resolvent set plays an important role in the resolvent formalism. Definitions Let ''X'' be a Banach space and let L\colon D(L)\rightarrow X be a linear operator with domain D(L) \subseteq X. Let id denote the identity operator on ''X''. For any \lambda \in \mathbb, let :L_ = L - \lambda\,\mathrm. A complex number \lambda is said to be a regular value if the following three statements are true: # L_\lambda is injective, that is, the corestriction of L_\lambda to its image has an inverse R(\lambda, L); # R(\lambda,L) is a bounded linear operator; # R(\lambda,L) is defined on a dense subspace of ''X'', that is, L_\lambda has dense range. The resolvent set of ''L'' is the set of all regular values of ''L'': :\rho(L) = \. The spectrum is the complement of the resolvent set: :\sigma (L) = \mathbb \setminus \rho (L). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unbounded Operator
In mathematics, more specifically functional analysis and operator theory, the notion of unbounded operator provides an abstract framework for dealing with differential operators, unbounded observables in quantum mechanics, and other cases. The term "unbounded operator" can be misleading, since * "unbounded" should sometimes be understood as "not necessarily bounded"; * "operator" should be understood as "linear operator" (as in the case of "bounded operator"); * the domain of the operator is a linear subspace, not necessarily the whole space; * this linear subspace is not necessarily closed; often (but not always) it is assumed to be dense; * in the special case of a bounded operator, still, the domain is usually assumed to be the whole space. In contrast to bounded operators, unbounded operators on a given space do not form an algebra, nor even a linear space, because each one is defined on its own domain. The term "operator" often means "bounded linear operator", but in the con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




C0 Semigroup
In mathematics, a ''C''0-semigroup, also known as a strongly continuous one-parameter semigroup, is a generalization of the exponential function. Just as exponential functions provide solutions of scalar linear constant coefficient ordinary differential equations, strongly continuous semigroups provide solutions of linear constant coefficient ordinary differential equations in Banach spaces. Such differential equations in Banach spaces arise from e.g. delay differential equations and partial differential equations. Formally, a strongly continuous semigroup is a representation of the semigroup (R+,+) on some Banach space ''X'' that is continuous in the strong operator topology. Thus, strictly speaking, a strongly continuous semigroup is not a semigroup, but rather a continuous representation of a very particular semigroup. Formal definition A strongly continuous semigroup on a Banach space X is a map T : \mathbb_+ \to L(X) such that # T(0) = I ,   (identity operator on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Subspace
In mathematics, and more specifically in linear algebra, a linear subspace, also known as a vector subspaceThe term ''linear subspace'' is sometimes used for referring to flats and affine subspaces. In the case of vector spaces over the reals, linear subspaces, flats, and affine subspaces are also called ''linear manifolds'' for emphasizing that there are also manifolds. is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a ''subspace'' when the context serves to distinguish it from other types of subspaces. Definition If ''V'' is a vector space over a field ''K'' and if ''W'' is a subset of ''V'', then ''W'' is a linear subspace of ''V'' if under the operations of ''V'', ''W'' is a vector space over ''K''. Equivalently, a nonempty subset ''W'' is a subspace of ''V'' if, whenever are elements of ''W'' and are elements of ''K'', it follows that is in ''W''. As a corollary, all vector spaces are equipped with at least two ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dense (topology)
In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation). Formally, A is dense in X if the smallest closed subset of X containing A is X itself. The of a topological space X is the least cardinality of a dense subset of X. Definition A subset A of a topological space X is said to be a of X if any of the following equivalent conditions are satisfied: The smallest closed subset of X containing A is X itself. The closure of A in X is equal to X. That is, \operatorname_X A = X. The interior of the complement of A is empty. That is, \operatorname_X (X \setminus A) = \varnothing. Every point in X either bel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


One-parameter Semigroup
In mathematics, a ''C''0-semigroup, also known as a strongly continuous one-parameter semigroup, is a generalization of the exponential function. Just as exponential functions provide solutions of scalar linear constant coefficient ordinary differential equations, strongly continuous semigroups provide solutions of linear constant coefficient ordinary differential equations in Banach spaces. Such differential equations in Banach spaces arise from e.g. delay differential equations and partial differential equations. Formally, a strongly continuous semigroup is a representation of the semigroup (R+,+) on some Banach space ''X'' that is continuous in the strong operator topology. Thus, strictly speaking, a strongly continuous semigroup is not a semigroup, but rather a continuous representation of a very particular semigroup. Formal definition A strongly continuous semigroup on a Banach space X is a map T : \mathbb_+ \to L(X) such that # T(0) = I ,   (identity operator on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]