Herbrand–Ribet Theorem
   HOME
*





Herbrand–Ribet Theorem
In mathematics, the Herbrand–Ribet theorem is a result on the class group of certain number fields. It is a strengthening of Ernst Kummer's theorem to the effect that the prime ''p'' divides the class number of the cyclotomic field of ''p''-th roots of unity if and only if ''p'' divides the numerator of the ''n''-th Bernoulli number ''B''''n'' for some ''n'', 0 < ''n'' < ''p'' − 1. The Herbrand–Ribet theorem specifies what, in particular, it means when ''p'' divides such an ''B''''n''.


Statement

The Δ of the of ''p''th roots of unity for an odd prime ''p'', Q(ζ) with ζ''p'' = 1, consists of the ''p'' − 1 group elements σ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kronecker Delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 &\text i=j. \end or with use of Iverson brackets: \delta_ = =j, where the Kronecker delta is a piecewise function of variables and . For example, , whereas . The Kronecker delta appears naturally in many areas of mathematics, physics and engineering, as a means of compactly expressing its definition above. In linear algebra, the identity matrix has entries equal to the Kronecker delta: I_ = \delta_ where and take the values , and the inner product of vectors can be written as \mathbf\cdot\mathbf = \sum_^n a_\delta_b_ = \sum_^n a_ b_. Here the Euclidean vectors are defined as -tuples: \mathbf = (a_1, a_2, \dots, a_n) and \mathbf= (b_1, b_2, ..., b_n) and the last step is obtained by using the values of the Kronecker delta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Iwasawa Theory
In number theory, Iwasawa theory is the study of objects of arithmetic interest over infinite towers of number fields. It began as a Galois module theory of ideal class groups, initiated by (), as part of the theory of cyclotomic fields. In the early 1970s, Barry Mazur considered generalizations of Iwasawa theory to abelian varieties. More recently (early 1990s), Ralph Greenberg has proposed an Iwasawa theory for motives. Formulation Iwasawa worked with so-called \Z_p-extensions - infinite extensions of a number field F with Galois group \Gamma isomorphic to the additive group of p-adic integers for some prime ''p''. (These were called \Gamma-extensions in early papers.) Every closed subgroup of \Gamma is of the form \Gamma^, so by Galois theory, a \Z_p-extension F_\infty/F is the same thing as a tower of fields :F=F_0 \subset F_1 \subset F_2 \subset \cdots \subset F_\infty such that \operatorname(F_n/F)\cong \Z/p^n\Z. Iwasawa studied classical Galois modules over F_n by a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Main Conjecture Of Iwasawa Theory
In mathematics, the main conjecture of Iwasawa theory is a deep relationship between ''p''-adic ''L''-functions and ideal class groups of cyclotomic fields, proved by Kenkichi Iwasawa for primes satisfying the Kummer–Vandiver conjecture and proved for all primes by . The Herbrand–Ribet theorem and the Gras conjecture are both easy consequences of the main conjecture. There are several generalizations of the main conjecture, to totally real fields,, CM fields, elliptic curves, and so on. Motivation was partly motivated by an analogy with Weil's description of the zeta function of an algebraic curve over a finite field in terms of eigenvalues of the Frobenius endomorphism on its Jacobian variety. In this analogy, * The action of the Frobenius corresponds to the action of the group Γ. * The Jacobian of a curve corresponds to a module ''X'' over Γ defined in terms of ideal class groups. * The zeta function of a curve over a finite field corresponds to a ''p''-adic ''L''-func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Andrew Wiles
Sir Andrew John Wiles (born 11 April 1953) is an English mathematician and a Royal Society Research Professor at the University of Oxford, specializing in number theory. He is best known for proving Fermat's Last Theorem, for which he was awarded the 2016 Abel Prize and the 2017 Copley Medal by the Royal Society. He was appointed Knight Commander of the Order of the British Empire in 2000, and in 2018, was appointed the first Regius Professor of Mathematics at Oxford. Wiles is also a MacArthur Fellows Program, 1997 MacArthur Fellow. Education and early life Wiles was born on 11 April 1953 in Cambridge, England, Cambridge, England, the son of Maurice Wiles, Maurice Frank Wiles (1923–2005) and Patricia Wiles (née Mowll). From 1952-1955, his father worked as the chaplain at Ridley Hall, Cambridge, and later became the Regius Professor of Divinity at the University of Oxford. Wiles attended King's College School, Cambridge, and The Leys School, Cambridge. Wiles states that h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Barry Mazur
Barry Charles Mazur (; born December 19, 1937) is an American mathematician and the Gerhard Gade University Professor at Harvard University. His contributions to mathematics include his contributions to Wiles's proof of Fermat's Last Theorem in number theory, Mazur's torsion theorem in arithmetic geometry, the Mazur swindle in geometric topology, and the Mazur manifold in differential topology. Life Born in New York City, Mazur attended the Bronx High School of Science and MIT, although he did not graduate from the latter on account of failing a then-present ROTC requirement. He was nonetheless accepted for graduate studies at Princeton University, from where he received his PhD in mathematics in 1959 after completing a doctoral dissertation titled "On embeddings of spheres." He then became a Junior Fellow at Harvard University from 1961 to 1964. He is the Gerhard Gade University Professor and a Senior Fellow at Harvard. He is the brother of Joseph Mazur and the father of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler Systems
In mathematics, an Euler system is a collection of compatible elements of Galois cohomology groups indexed by fields. They were introduced by in his work on Heegner points on modular elliptic curves, which was motivated by his earlier paper and the work of . Euler systems are named after Leonhard Euler because the factors relating different elements of an Euler system resemble the Euler factors of an Euler product. Euler systems can be used to construct annihilators of ideal class groups or Selmer groups, thus giving bounds on their orders, which in turn has led to deep theorems such as the finiteness of some Tate-Shafarevich groups. This led to Karl Rubin's new proof of the main conjecture of Iwasawa theory, considered simpler than the original proof due to Barry Mazur and Andrew Wiles. Definition Although there are several definitions of special sorts of Euler system, there seems to be no published definition of an Euler system that covers all known cases. But it is poss ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Forms
In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory. A modular function is a function that is invariant with respect to the modular group, but without the condition that be holomorphic in the upper half-plane (among other requirements). Instead, modular functions are meromorphic (that is, they are holomorphic on the complement of a set of isolated points, which are poles of the function). Modular form theory is a special case of the more general theory of automorphic forms which are functions defined on Lie groups which transform nicely wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class Field Theory
In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is credited as one of pioneers of the notion of a class field. However, this notion was already familiar to Kronecker and it was actually Weber who coined the term before Hilbert's fundamental papers came out. The relevant ideas were developed in the period of several decades, giving rise to a set of conjectures by Hilbert that were subsequently proved by Takagi and Artin (with the help of Chebotarev's theorem). One of the major results is: given a number field ''F'', and writing ''K'' for the maximal abelian unramified extension of ''F'', the Galois group of ''K'' over ''F'' is canonically isomorphic to the ideal class group of ''F''. This statement was generalized to the so called Artin reciprocity law; in the idelic language, writing ''CF' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kenneth Ribet
Kenneth Alan Ribet (; born June 28, 1948) is an American mathematician working in algebraic number theory and algebraic geometry. He is known for the Herbrand–Ribet theorem and Ribet's theorem, which were key ingredients in the proof of Fermat's Last Theorem, as well as for his service as President of the American Mathematical Society from 2017 to 2019. He is currently a professor of mathematics at the University of California, Berkeley. Early life and education Kenneth Ribet was born in Brooklyn, New York to parents David Ribet and Pearl Ribet, both Jewish, on June 28, 1948. As a student at Far Rockaway High School, Ribet was on a competitive mathematics team, but his first field of study was chemistry. Ribet earned his bachelor's degree and master's degree from Brown University in 1969. In 1973, Ribet received his Ph.D. from Harvard University under the supervision of John Tate. Career After receiving his doctoral degree, Ribet taught at Princeton University for three year ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacques Herbrand
Jacques Herbrand (12 February 1908 – 27 July 1931) was a French mathematician. Although he died at age 23, he was already considered one of "the greatest mathematicians of the younger generation" by his professors Helmut Hasse and Richard Courant. He worked in mathematical logic and class field theory. He introduced recursive functions. ''Herbrand's theorem'' refers to either of two completely different theorems. One is a result from his doctoral thesis in proof theory, and the other one half of the Herbrand–Ribet theorem. The Herbrand quotient is a type of Euler characteristic, used in homological algebra. He contributed to Hilbert's program in the foundations of mathematics by providing a constructive consistency proof for a weak system of arithmetic. The proof uses the above-mentioned, proof-theoretic Herbrand's theorem. Biography Herbrand finished his doctorate at École Normale Supérieure in Paris under Ernest Vessiot in 1929. He joined the army in October 1929, howev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]