Hephaestin
   HOME
*





Hephaestin
Hephaestin, also known as HEPH, is a protein which in humans is encoded by the ''HEPH'' gene. Function Hephaestin is involved in the metabolism and homeostasis of iron and possibly copper. It is a transmembrane copper-dependent ferroxidase responsible for transporting dietary iron from intestinal enterocytes into the circulatory system. The highest expression of hephaestin is found in small intestine. It is limited to enterocytes of the villi (where the iron absorption takes place), being almost absent in crypt cells. Hephaestin converts iron(II) state, Fe2+, to iron(III) state, Fe3+, and mediates iron efflux most likely in cooperation with the basolateral iron transporter, ''ferroportin 1''. To a lesser extent hephaestin has been detected in colon, spleen, kidney, breast, placenta and bone trabecular cells but its role in these tissues remains to be established. Hephaestin presents homology with ceruloplasmin, a serum dehydrogenase protein involved in copper detoxification and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ceruloplasmin
Ceruloplasmin (or caeruloplasmin) is a ferroxidase enzyme that in humans is encoded by the ''CP'' gene. Ceruloplasmin is the major copper-carrying protein in the blood, and in addition plays a role in iron metabolism. It was first described in 1948. Another protein, hephaestin, is noted for its homology to ceruloplasmin, and also participates in iron and probably copper metabolism. Function Ceruloplasmin (CP) is an enzyme () synthesized in the liver containing 6 atoms of copper in its structure. Ceruloplasmin carries more than 95% of the total copper in healthy human plasma. The rest is accounted for by macroglobulins. Ceruloplasmin exhibits a copper-dependent oxidase activity, which is associated with possible oxidation of Fe2+ (ferrous iron) into Fe3+ (ferric iron), therefore assisting in its transport in the plasma in association with transferrin, which can carry iron only in the ferric state. The molecular weight of human ceruloplasmin is reported to be 151kDa. Despite ext ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fet3p
Fet3p is a multicopper oxidase (MCO)2 found in ''Saccharomyces cerevisiae'' with a structure consisting of three cupredoxin-like β-barrel domains and four copper ions located in three distinct metal sites (T1 in domain 3, T2, and the binuclear T3 at the interface between domains 1 and 3). Fet3p is a type I membrane protein with an orientation that places the amino-terminal oxidase domain in the exocellular space (Nexo) and the carboxyl terminus in the cytoplasm (Ccyt). Part of the ferroxidase reaction, Fet3p catalyzes the oxidation of Fe(II) to Fe(III) using O2 as substrate. The Fe(III) generated by Fet3p is a ligand for the iron permease The permeases are membrane transport proteins, a class of multipass transmembrane proteins that allow the diffusion of a specific molecule in or out of the cell in the direction of a concentration gradient, a form of facilitated diffusion. The per ..., Ftr1p. References {{Portal bar, Biology, border=no Oxidoreductases ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anemia
Anemia or anaemia (British English) is a blood disorder in which the blood has a reduced ability to carry oxygen due to a lower than normal number of red blood cells, or a reduction in the amount of hemoglobin. When anemia comes on slowly, the symptoms are often vague, such as tiredness, weakness, shortness of breath, headaches, and a reduced ability to exercise. When anemia is acute, symptoms may include confusion, feeling like one is going to pass out, loss of consciousness, and increased thirst. Anemia must be significant before a person becomes noticeably pale. Symptoms of anemia depend on how quickly hemoglobin decreases. Additional symptoms may occur depending on the underlying cause. Preoperative anemia can increase the risk of needing a blood transfusion following surgery. Anemia can be temporary or long term and can range from mild to severe. Anemia can be caused by blood loss, decreased red blood cell production, and increased red blood cell breakdown. Causes o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IREG1
Ferroportin-1, also known as solute carrier family 40 member 1 (SLC40A1) or iron-regulated transporter 1 (IREG1), is a protein that in humans is encoded by the ''SLC40A1'' gene, and is part of the Ferroportin (Fpn) FamilyTC# 2.A.100. Ferroportin is a transmembrane protein that transports iron from the inside of a cell (biology), cell to the outside of the cell. Ferroportin is the only known iron exporter. After dietary iron is absorbed into the cells of the small intestine, ferroportin allows that iron to be transported out of those cells and into the bloodstream. Fpn also mediates the efflux of iron recycled from macrophages resident in the spleen and liver. Ferroportin is regulated by hepcidin, a hormone produced by the liver; hepcidin binds to Fpn and limits its iron-efflux activity, thereby reducing iron delivery to the blood plasma. Therefore, the interaction between Fpn and hepcidin controls systemic Human iron metabolism, iron homeostasis. Structure and function Members ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ferroportin
Ferroportin-1, also known as solute carrier family 40 member 1 (SLC40A1) or iron-regulated transporter 1 (IREG1), is a protein that in humans is encoded by the ''SLC40A1'' gene, and is part of the Ferroportin (Fpn) FamilyTC# 2.A.100. Ferroportin is a transmembrane protein that transports iron from the inside of a cell to the outside of the cell. Ferroportin is the only known iron exporter. After dietary iron is absorbed into the cells of the small intestine, ferroportin allows that iron to be transported out of those cells and into the bloodstream. Fpn also mediates the efflux of iron recycled from macrophages resident in the spleen and liver. Ferroportin is regulated by hepcidin, a hormone produced by the liver; hepcidin binds to Fpn and limits its iron-efflux activity, thereby reducing iron delivery to the blood plasma. Therefore, the interaction between Fpn and hepcidin controls systemic iron homeostasis. Structure and function Members of the ferroportin family consist of 4 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


DMT1
Natural resistance-associated macrophage protein 2 (NRAMP 2), also known as divalent metal transporter 1 (DMT1) and divalent cation transporter 1 (DCT1), is a protein that in humans is encoded by the ''SLC11A2'' (solute carrier family 11, member 2) gene. DMT1 represents a large family of orthologous metal ion transporter proteins that are highly conserved from bacteria to humans. As its name suggests, DMT1 binds a variety of divalent metals including cadmium (Cd2+), copper (Cu2+), and zinc (Zn2+,); however, it is best known for its role in transporting ferrous iron (Fe2+). DMT1 expression is regulated by body iron stores to maintain iron homeostasis. DMT1 is also important in the absorption and transport of manganese (Mn2+). In the digestive tract, it is located on the apical membrane of enterocytes, where it carries out H+-coupled transport of divalent metal cations from the intestinal lumen into the cell. Function Iron is not only essential for the human body, it is required f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


TEST Hephaestin Illustration
Test(s), testing, or TEST may refer to: * Test (assessment), an educational assessment intended to measure the respondents' knowledge or other abilities Arts and entertainment * ''Test'' (2013 film), an American film * ''Test'' (2014 film), a Russian film * ''Test'' (group), a jazz collective * ''Tests'' (album), a 1998 album by The Microphones Computing * .test, a reserved top-level domain * test (Unix), a Unix command for evaluating conditional expressions * TEST (x86 instruction), an x86 assembly language instruction People * Test (wrestler), ring name for Andrew Martin (1975–2009), Canadian professional wrestler * John Test (1771–1849), American politician * Zack Test (born 1989), American rugby union player Science and technology * Proof test * Stress testing * Test (biology), the shell of sea urchins and certain microorganisms * Test equipment Sports * Test cricket, a series of matches played by two national representative teams * Test match (rugby league), a m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Protein Engineering
Protein engineering is the process of developing useful or valuable proteins. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It has been used to improve the function of many enzymes for industrial catalysis. It is also a product and services market, with an estimated value of $168 billion by 2017. There are two general strategies for protein engineering: rational protein design and directed evolution. These methods are not mutually exclusive; researchers will often apply both. In the future, more detailed knowledge of protein structure and function, and advances in high-throughput screening, may greatly expand the abilities of protein engineering. Eventually, even unnatural amino acids may be included, via newer methods, such as expanded genetic code, that allow encoding novel amino acids in genetic code. Approaches Rational design In rational protein design, a scientist uses ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Histidine
Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated –NH3+ form under biological conditions), a carboxylic acid group (which is in the deprotonated –COO− form under biological conditions), and an imidazole side chain (which is partially protonated), classifying it as a positively charged amino acid at physiological pH. Initially thought essential only for infants, it has now been shown in longer-term studies to be essential for adults also. It is encoded by the codons CAU and CAC. Histidine was first isolated by Albrecht Kossel and Sven Gustaf Hedin in 1896. It is also a precursor to histamine, a vital inflammatory agent in immune responses. The acyl radical is histidyl. Properties of the imidazole side chain The conjugate acid (protonated form) of the imidazole side chain in histidine has a p''K''a of approximately 6.0. Thus, below a pH of 6, the imidazole ring ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cysteine
Cysteine (symbol Cys or C; ) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. When present as a deprotonated catalytic residue, sometimes the symbol Cyz is used. The deprotonated form can generally be described by the symbol Cym as well. The thiol is susceptible to oxidation to give the disulfide derivative cystine, which serves an important structural role in many proteins. In this case, the symbol Cyx is sometimes used. When used as a food additive, it has the E number E920. Cysteine is encoded by the codons UGU and UGC. The sulfur-containing amino acids cysteine and methionine are more easily oxidized than the other amino acids. Structure Like other amino acids (not as a residue of a protein), cysteine exists as a zwitterion. Cysteine has chirality in the older / notation based on homology to - and -glyceraldehyde. In the newer ''R''/''S'' system of designating chi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]