Henson Graph
   HOME
*





Henson Graph
In graph theory, the Henson graph is an undirected infinite graph, the unique countable homogeneous graph that does not contain an -vertex clique (graph theory), clique but that does contain all -free finite graphs as induced subgraphs. For instance, is a triangle-free graph that contains all finite triangle-free graphs. These graphs are named after C. Ward Henson, who published a construction for them (for all ) in 1971.. The first of these graphs, , is also called the homogeneous triangle-free graph or the universal triangle-free graph. Construction To construct these graphs, Henson orders the vertices of the Rado graph into a sequence with the property that, for every finite set of vertices, there are infinitely many vertices having as their set of earlier neighbors. (The existence of such a sequence uniquely defines the Rado graph.) He then defines to be the induced subgraph of the Rado graph formed by removing the final vertex (in the sequence ordering) of every -clique of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infinite Graph
This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges. Symbols A B C D E F G H I K L M N O ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homogeneous Graph
In mathematics, a ''k''-ultrahomogeneous graph is a graph in which every isomorphism between two of its induced subgraphs of at most ''k'' vertices can be extended to an automorphism of the whole graph. A ''k''-homogeneous graph obeys a weakened version of the same property in which every isomorphism between two induced subgraphs implies the existence of an automorphism of the whole graph that maps one subgraph to the other (but does not necessarily extend the given isomorphism). A homogeneous graph is a graph that is ''k''-homogeneous for every ''k'', or equivalently ''k''-ultrahomogeneous for every ''k''. Classification The only finite homogeneous graphs are the cluster graphs ''mK''''n'' formed from the disjoint unions of isomorphic complete graphs, the Turán graphs formed as the complement graphs of ''mK''''n'', the 3 × 3 rook's graph, and the 5- cycle. The only countably infinite homogeneous graphs are the disjoint unions of isomorphic complete graphs (with th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clique (graph Theory)
In the mathematical area of graph theory, a clique ( or ) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph G is an induced subgraph of G that is complete. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied. Although the study of complete subgraphs goes back at least to the graph-theoretic reformulation of Ramsey theory by , the term ''clique'' comes from , who used complete subgraphs in social networks to model cliques of people; that is, groups of people all of whom know each other. Cliques have many other applications in the sciences and particularly in bioinf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle-free Graph
In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs. By Turán's theorem, the ''n''-vertex triangle-free graph with the maximum number of edges is a complete bipartite graph in which the numbers of vertices on each side of the bipartition are as equal as possible. Triangle finding problem The triangle finding problem is the problem of determining whether a graph is triangle-free or not. When the graph does contain a triangle, algorithms are often required to output three vertices which form a triangle in the graph. It is possible to test whether a graph with edges is triangle-free in time . Another approach is to find the trace of , where is the adjacency matrix of the graph. The trace is zero if and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pacific Journal Of Mathematics
The Pacific Journal of Mathematics is a mathematics research journal supported by several universities and research institutes, and currently published on their behalf by Mathematical Sciences Publishers, a non-profit academic publishing organisation, and the University of California, Berkeley. It was founded in 1951 by František Wolf and Edwin F. Beckenbach and has been published continuously since, with five two-issue volumes per year and 12 issues per year. Full-text PDF versions of all journal articles are available on-line via the journal's website with a subscription. The journal is incorporated as a 501(c)(3) organization. References

Mathematics journals Publications established in 1951 Mathematical Sciences Publishers academic journals {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rado Graph
In the mathematical field of graph theory, the Rado graph, Erdős–Rényi graph, or random graph is a countably infinite graph that can be constructed (with probability one) by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge. The names of this graph honor Richard Rado, Paul Erdős, and Alfréd Rényi, mathematicians who studied it in the early 1960s; it appears even earlier in the work of . The Rado graph can also be constructed non-randomly, by symmetrizing the membership relation of the hereditarily finite sets, by applying the BIT predicate to the binary representations of the natural numbers, or as an infinite Paley graph that has edges connecting pairs of prime numbers congruent to 1 mod 4 that are quadratic residues modulo each other. Every finite or countably infinite graph is an induced subgraph of the Rado graph, and can be found as an induced subgraph by a greedy algorithm that builds up the subgraph one ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Induced Subgraph
In the mathematical field of graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges (from the original graph) connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) be any graph, and let S\subset V be any subset of vertices of . Then the induced subgraph G is the graph whose vertex set is S and whose edge set consists of all of the edges in E that have both endpoints in S . That is, for any two vertices u,v\in S , u and v are adjacent in G if and only if they are adjacent in G . The same definition works for undirected graphs, directed graphs, and even multigraphs. The induced subgraph G may also be called the subgraph induced in G by S , or (if context makes the choice of G unambiguous) the induced subgraph of S . Examples Important types of induced subgraphs include the following. *Induced paths are induced subgraphs that are paths. The shortest path between ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Universal Graph
In mathematics, a universal graph is an infinite graph that contains ''every'' finite (or at-most- countable) graph as an induced subgraph. A universal graph of this type was first constructed by Richard Rado and is now called the Rado graph or random graph. More recent work has focused on universal graphs for a graph family : that is, an infinite graph belonging to ''F'' that contains all finite graphs in . For instance, the Henson graphs are universal in this sense for the -clique-free graphs. A universal graph for a family of graphs can also refer to a member of a sequence of finite graphs that contains all graphs in ; for instance, every finite tree is a subgraph of a sufficiently large hypercube graph so a hypercube can be said to be a universal graph for trees. However it is not the smallest such graph: it is known that there is a universal graph for -vertex trees, with only  vertices and edges, and that this is optimal. A construction based on the planar sepa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chromatic Number
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring problems are often stated and studied as-is. This is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamiltonian Path
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. Determining whether such paths and cycles exist in graphs (the Hamiltonian path problem and Hamiltonian cycle problem) are NP-complete. Hamiltonian paths and cycles are named after William Rowan Hamilton who invented the icosian game, now also known as ''Hamilton's puzzle'', which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structure based on roots of unity with many similarities to the quaternions (also invented by Hami ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parametric Families Of Graphs
Parametric may refer to: Mathematics *Parametric equation, a representation of a curve through equations, as functions of a variable *Parametric statistics, a branch of statistics that assumes data has come from a type of probability distribution * Parametric derivative, a type of derivative in calculus *Parametric model, a family of distributions that can be described using a finite number of parameters *Parametric oscillator, a harmonic oscillator whose parameters oscillate in time *Parametric surface, a particular type of surface in the Euclidean space R3 *Parametric family, a family of objects whose definitions depend on a set of parameters Science * Parametric process, in optical physics, any process in which an interaction between light and matter does not change the state of the material *Spontaneous parametric down-conversion, in quantum optics, a source of entangled photon pairs and of single photons *Optical parametric amplifier, a type of laser light source that em ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]