Heegner's Lemma
   HOME
*





Heegner's Lemma
In mathematics, Heegner's lemma is a lemma used by Kurt Heegner Kurt Heegner (; 16 December 1893 – 2 February 1965) was a German private scholar from Berlin, who specialized in radio engineering and mathematics. He is famous for his mathematical discoveries in number theory and, in particular, the Stark–He ... in his paper on the class number problem. His lemma states that if :y^2=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0 is a curve over a field with ''a''4 not a square, then it has a solution if it has a solution in an extension of odd degree. References * Diophantine equations Lemmas in number theory {{numtheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kurt Heegner
Kurt Heegner (; 16 December 1893 – 2 February 1965) was a German private scholar from Berlin, who specialized in radio engineering and mathematics. He is famous for his mathematical discoveries in number theory and, in particular, the Stark–Heegner theorem. Life and career Heegner was born and died in Berlin. In 1952, he published the Stark–Heegner theorem which he claimed was the solution to a classic number theory problem proposed by the great mathematician Gauss, the class number 1 problem. Heegner's work was not accepted for years, mainly due to his quoting of a portion of Heinrich Martin Weber's work that was known to be incorrect (though he never used this result in the proof). Heegner's proof was accepted as essentially correct after a 1967 announcement by Bryan Birch, and definitively resolved by a paper by Harold Stark that had been delayed in publication until 1969 (Stark had independently arrived at a similar proof, but disagrees with the common notion that his p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class Number Problem
In mathematics, the Gauss class number problem (for imaginary quadratic fields), as usually understood, is to provide for each ''n'' ≥ 1 a complete list of imaginary quadratic fields \mathbb(\sqrt) (for negative integers ''d'') having class number (number theory), class number ''n''. It is named after Carl Friedrich Gauss. It can also be stated in terms of Discriminant of an algebraic number field, discriminants. There are related questions for real quadratic fields and for the behavior as d \to -\infty. The difficulty is in effective computation of bounds: for a given discriminant, it is easy to compute the class number, and there are several ineffective lower bounds on class number (meaning that they involve a constant that is not computed), but effective bounds (and explicit proofs of completeness of lists) are harder. Gauss's original conjectures The problems are posed in Gauss's Disquisitiones Arithmeticae of 1801 (Section V, Articles 303 and 304). are a set of mor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Extension
In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ''F''. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry. Subfield A subfield K of a field L is a subset K\subseteq L that is a field with respect to the field operations inherited from L. Equivalently, a subfield is a subset that contains 1, and is closed under the operations of addition, subtraction, multiplication, and taking the inverse of a nonzero element of K. As , the latter definition implies K and L have the same zero eleme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diophantine Equations
In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents. Diophantine problems have fewer equations than unknowns and involve finding integers that solve simultaneously all equations. As such systems of equations define algebraic curves, algebraic surfaces, or, more generally, algebraic sets, their study is a part of algebraic geometry that is called ''Diophantine geometry''. The word ''Diophantine'' refers to the Hellenistic mathematician of the 3rd century, Diophantus of Alexandria, who made a study of such equations and was one of the first mathematicians to introduce symbolism into algebra. The mathematical study of Diophantine problems that Di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]