Harder–Narasimhan Stratification
   HOME
*





Harder–Narasimhan Stratification
In algebraic geometry and complex geometry, the Harder–Narasimhan stratification is any of a stratification of the moduli stack of principal ''G''-bundles by locally closed substacks in terms of "loci of instabilities". In the original form due to Harder and Narasimhan, ''G'' was the general linear group; i.e., the moduli stack was the moduli stack of vector bundles, but, today, the term refers to any of generalizations. The scheme-theoretic version is due to Shatz and so the term "Shatz stratification" is also used synonymously. The general case is due to Behrend.http://www.math.harvard.edu/~lurie/282ynotes/LectureIII-Cohomology.pdf References * Further reading * Nitin NitsureSchematic Harder-Narasimhan Stratification {{algebraic-geometry-stub Algebraic geometry Stratifications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Geometry
In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis. Complex geometry sits at the intersection of algebraic geometry, differential geometry, and complex analysis, and uses tools from all three areas. Because of the blend of techniques and ideas from various areas, problems in complex geometry are often more tractable or concrete than in general. For example, the classification of complex manifolds and complex algebraic varieties through the minimal model program and the construction of moduli spaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moduli Stack Of Principal Bundles
In algebraic geometry, given a smooth projective curve ''X'' over a finite field \mathbf_q and a smooth affine group scheme ''G'' over it, the moduli stack of principal bundles over ''X'', denoted by \operatorname_G(X), is an algebraic stack given by: for any \mathbf_q-algebra ''R'', :\operatorname_G(X)(R) = the category of principal ''G''-bundles over the relative curve X \times_ \operatornameR. In particular, the category of \mathbf_q-points of \operatorname_G(X), that is, \operatorname_G(X)(\mathbf_q), is the category of ''G''-bundles over ''X''. Similarly, \operatorname_G(X) can also be defined when the curve ''X'' is over the field of complex numbers. Roughly, in the complex case, one can define \operatorname_G(X) as the quotient stack of the space of holomorphic connections on ''X'' by the gauge group. Replacing the quotient stack (which is not a topological space) by a homotopy quotient (which is a topological space) gives the homotopy type of \operatorname_G(X). In the fin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stable Vector Bundle
In mathematics, a stable vector bundle is a (holomorphic or algebraic) vector bundle that is stable in the sense of geometric invariant theory. Any holomorphic vector bundle may be built from stable ones using Harder–Narasimhan filtration. Stable bundles were defined by David Mumford in and later built upon by David Gieseker, Fedor Bogomolov, Thomas Bridgeland and many others. Motivation One of the motivations for analyzing stable vector bundles is their nice behavior in families. In fact, Moduli spaces of stable vector bundles can be constructed using the Quot scheme in many cases, whereas the stack of vector bundles \mathbfGL_n is an Artin stack whose underlying set is a single point. Here's an example of a family of vector bundles which degenerate poorly. If we tensor the Euler sequence of \mathbb^1 by \mathcal(1) there is an exact sequence0 \to \mathcal(-1) \to \mathcal\oplus \mathcal \to \mathcal(1) \to 0which represents a non-zero element in v \in \text^1(\mathcal(1),\m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

General Linear Group
In mathematics, the general linear group of degree ''n'' is the set of invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with identity matrix as the identity element of the group. The group is so named because the columns (and also the rows) of an invertible matrix are linearly independent, hence the vectors/points they define are in general linear position, and matrices in the general linear group take points in general linear position to points in general linear position. To be more precise, it is necessary to specify what kind of objects may appear in the entries of the matrix. For example, the general linear group over R (the set of real numbers) is the group of invertible matrices of real numbers, and is denoted by GL''n''(R) or . More generally, the general linear group of degree ''n'' over any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moduli Stack Of Vector Bundles
In algebraic geometry, the moduli stack of rank-''n'' vector bundles Vect''n'' is the stack parametrizing vector bundles (or locally free sheaves) of rank ''n'' over some reasonable spaces. It is a smooth algebraic stack of the negative dimension -n^2. Moreover, viewing a rank-''n'' vector bundle as a principal GL_n-bundle, Vect''n'' is isomorphic to the classifying stack BGL_n = text/GL_n Definition For the base category, let ''C'' be the category of schemes of finite type over a fixed field ''k''. Then \operatorname_n is the category where # an object is a pair (U, E) of a scheme ''U'' in ''C'' and a rank-''n'' vector bundle ''E'' over ''U'' # a morphism (U, E) \to (V, F) consists of f: U \to V in ''C'' and a bundle-isomorphism f^* F \overset\to E. Let p: \operatorname_n \to C be the forgetful functor. Via ''p'', \operatorname_n is a prestack over ''C''. That it is a stack over ''C'' is precisely the statement "vector bundles have the descent property". Note that each fiber ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]