HOMFLY Polynomial
   HOME





HOMFLY Polynomial
In the mathematics, mathematical field of knot theory, the HOMFLY polynomial or HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e. a knot invariant in the form of a polynomial of variables ''m'' and ''l''. A central question in the knot theory, mathematical theory of knots is whether two knot diagrams represent the same knot. One tool used to answer such questions is a knot polynomial, which is computed from a diagram of the knot and can be shown to be an knot invariant, invariant of the knot, i.e. diagrams representing the same knot have the same polynomial. The converse may not be true. The HOMFLY polynomial is one such invariant and it generalizes two polynomials previously discovered, the Alexander polynomial and the Jones polynomial, both of which can be obtained by appropriate substitutions from HOMFLY. The HOMFLY polynomial is also a quantum invariant. The name ''HOMFLY'' combines the initials of its co-discover ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kenneth Millett
Kenneth C. Millett (born 1941) is a professor of mathematics at the University of California, Santa Barbara.Curriculum vitae
retrieved 2015-02-09.
His research concerns , , and the applications of knot theory to structure; his initial is the "M" in the name of the . Millett gradu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Louis Kauffman
Louis Hirsch Kauffman (born February 3, 1945) is an American mathematician, mathematical physicist, and professor of mathematics in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. He does research in topology, knot theory, topological quantum field theory, quantum information theory, and diagrammatic and categorical mathematics. He is best known for the introduction and development of the bracket polynomial and the Kauffman polynomial. Biography Kauffman was valedictorian of his graduating class at Norwood Norfolk Central High School in 1962. He received his B.S. at the Massachusetts Institute of Technology in 1966 and his Ph.D. in mathematics from Princeton University in 1972, with thesis ''Cyclic Branched-Covers, O(n)-Actions and Hypersurface Singularities'' written under the supervision of William Browder. Kauffman has worked at many places as a visiting professor and researcher, including the University of Za ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chirality
Chirality () is a property of asymmetry important in several branches of science. The word ''chirality'' is derived from the Greek (''kheir''), "hand", a familiar chiral object. An object or a system is ''chiral'' if it is distinguishable from its mirror image; that is, it cannot be superposed (not to be confused with superimposed) onto it. Conversely, a mirror image of an ''achiral'' object, such as a sphere, cannot be distinguished from the object. A chiral object and its mirror image are called '' enantiomorphs'' (Greek, "opposite forms") or, when referring to molecules, ''enantiomers''. A non-chiral object is called ''achiral'' (sometimes also ''amphichiral'') and can be superposed on its mirror image. The term was first used by Lord Kelvin in 1893 in the second Robert Boyle Lecture at the Oxford University Junior Scientific Club which was published in 1894: Human hands are perhaps the most recognized example of chirality. The left hand is a non-superposable mirror ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Composite Knot
In knot theory, a prime knot or prime link is a knot that is, in a certain sense, indecomposable. Specifically, it is a non- trivial knot which cannot be written as the knot sum of two non-trivial knots. Knots that are not prime are said to be composite knots or composite links. It can be a nontrivial problem to determine whether a given knot is prime or not. A family of examples of prime knots are the torus knots. These are formed by wrapping a circle around a torus ''p'' times in one direction and ''q'' times in the other, where ''p'' and ''q'' are coprime integers. Knots are characterized by their crossing numbers. The simplest prime knot is the trefoil with three crossings. The trefoil is actually a (2, 3)-torus knot. The figure-eight knot, with four crossings, is the simplest non-torus knot. For any positive integer ''n'', there are a finite number of prime knots with ''n'' crossings. The first few values for exclusively prime knots and for prime ''or'' composite kn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Knot Sum
In mathematics, specifically in topology, the operation of connected sum is a geometric modification on manifolds. Its effect is to join two given manifolds together near a chosen point on each. This construction plays a key role in the classification of closed surfaces. More generally, one can also join manifolds together along identical submanifolds; this generalization is often called the fiber sum. There is also a closely related notion of a connected sum on knots, called the knot sum or composition of knots. Connected sum at a point A connected sum of two ''m''-dimensional manifolds is a manifold formed by deleting a ball inside each manifold and gluing together the resulting boundary spheres. If both manifolds are oriented, there is a unique connected sum defined by having the gluing map reverse orientation. Although the construction uses the choice of the balls, the result is unique up to homeomorphism. One can also make this operation work in the smooth category, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Skein (HOMFLY)
Skein may refer to: * A flock of geese or ducks in flight * A wound ball of yarn with a centre pull strand; see Hank * A metal piece fitted over the end of a wagon axle, to which the wheel is mounted * Skein (unit), a unit of length used by weavers and tailors * Skein dubh, a Scottish knife * Skein module, a mathematical concept * Skein relation, a mathematical concept often used to give a simple definition of knot polynomials * Skein (comics), a fictional supervillain in the Marvel Comics universe * Skein (hash function), a candidate hash function to the NIST hash function competition from Bruce Schneier et al. See also * '' The Tangled Skein'', a novel by Baroness Orczy * '' With a Tangled Skein'', a novel by Piers Anthony, book three of ''Incarnations of Immortality'' * Skien Skien () is a municipality in Telemark county, Norway. It is located in the traditional district of Grenland, although historically it belonged to Grenmar/Skiensfjorden, while Grenland referre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Skein Relation
Skein relations are a mathematical tool used to study knots. A central question in the mathematical theory of knots is whether two knot diagrams represent the same knot. One way to answer the question is using knot polynomials, which are invariants of the knot. If two diagrams have different polynomials, they represent different knots. However, the converse is not true. Skein relations are often used to give a simple definition of knot polynomials. A skein relation gives a linear relation between the values of a knot polynomial on a collection of three links which differ from each other only in a small region. For some knot polynomials, such as the Conway, Alexander, and Jones polynomials, the relevant skein relations are sufficient to calculate the polynomial recursively. Definition A skein relationship requires three link diagrams that are identical except at one crossing. The three diagrams must exhibit the three possibilities that could occur for the two line segments at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Józef H
Józef is a Polish variant of the masculine given name Joseph. Art * Józef Chełmoński (1849-1914), Polish painter * Józef Gosławski (1908-1963), Polish sculptor Clergy * Józef Glemp (1929-2013), Polish cardinal * Józef Kowalski (1911-1942), Polish priest * Józef Milik (1922-2006), Polish priest and biblical scholar * Józef Tischner (1931-2000), Polish priest * Józef Andrzej Załuski (1702-1774), Polish priest and Bishop of Kyiv * Józef Życiński (1948-2011), Polish archbishop Literature * Józef Maksymilian Ossoliński (1748-1826), Polish novelist and poet * Józef Wybicki (1747-1822), Polish poet Military * Józef Bem (1794-1850), Polish general and engineer * Józef Grzesiak (1900-1975), Polish resistance member and scoutmaster * Józef Haller (1873-1960), Polish general * Józef Piotrowski (1840-1923), Polish participant in the January Uprising * Józef Poniatowski (1763-1813), Polish general * Józef Sowiński (1777-1831), Polish general ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter J
Peter may refer to: People * List of people named Peter, a list of people and fictional characters with the given name * Peter (given name) ** Saint Peter (died 60s), apostle of Jesus, leader of the early Christian Church * Peter (surname), a surname (including a list of people with the name) Culture * Peter (actor) (born 1952), stage name Shinnosuke Ikehata, a Japanese dancer and actor * ''Peter'' (1934 film), a film directed by Henry Koster * ''Peter'' (2021 film), a Marathi language film * "Peter" (''Fringe'' episode), an episode of the television series ''Fringe'' * ''Peter'' (novel), a 1908 book by Francis Hopkinson Smith * "Peter" (short story), an 1892 short story by Willa Cather * ''Peter'' (album), a 1972 album by Peter Yarrow * ''Peter'', a 1993 EP by Canadian band Eric's Trip * "Peter", 2024 song by Taylor Swift from '' The Tortured Poets Department: The Anthology'' Animals * Peter (Lord's cat), cat at Lord's Cricket Ground in London * Peter (chief mouse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adrian Ocneanu
The ''Octacube'' is a large, stainless steel sculpture displayed in the mathematics department of Pennsylvania State University in State College, PA. The sculpture represents a mathematical object called the 24-cell or "octacube". Because a real 24-cell is four-dimensional, the artwork is actually a projection into the three-dimensional world. ''Octacube'' has very high intrinsic symmetry, which matches features in chemistry (molecular symmetry) and physics (quantum field theory). The sculpture was designed by , a mathematics professor at Pennsylvania State University. The university's machine shop spent over a year completing the intricate metal-work. ''Octacube'' was funded by an alumna in memory of her husband, Kermit Anderson, who died in the September 11 attacks. Artwork The ''Octacube's'' metal skeleton measures about in all three dimensions. It is a complex arrangement of unpainted, tri-cornered flanges. The base is a high granite block, with some engraving. The ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Knot Theory
In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring (or "unknot"). In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, \mathbb^3. Two mathematical knots are equivalent if one can be transformed into the other via a deformation of \mathbb^3 upon itself (known as an ambient isotopy); these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself. Knots can be described in various ways. Using different description methods, there may be more than one description of the same knot. For example, a common method of describing a knot is a planar diagram called a knot diagram, in which any knot can be drawn in many different ways. Therefore, a fundamental p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]