Hyperconnected Space
In the mathematical field of topology, a hyperconnected space or irreducible space is a topological space ''X'' that cannot be written as the union of two proper closed subsets (whether disjoint or non-disjoint). The name ''irreducible space'' is preferred in algebraic geometry. For a topological space ''X'' the following conditions are equivalent: * No two nonempty open sets are disjoint. * ''X'' cannot be written as the union of two proper closed subsets. * Every nonempty open set is dense in ''X''. * Every open set is connected. * The interior of every proper closed subset of ''X'' is empty. * Every subset is dense or nowhere dense in ''X''. * No two points can be separated by disjoint neighbourhoods. A space which satisfies any one of these conditions is called ''hyperconnected'' or ''irreducible''. Due to the condition about neighborhoods of distinct points being in a sense the opposite of the Hausdorff property, some authors call such spaces anti-Hausdorff. The empty s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topology
Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Torsion (mechanics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a Set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of List of continuity-related mathematical topics, continuity. Euclidean spaces, and, more generally, metric spaces are examples of topological spaces, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and Homotopy, homotopies. A property that is invariant under such deformations is a to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spectrum Of A Ring
In commutative algebra, the prime spectrum (or simply the spectrum) of a commutative ring R is the set of all prime ideals of R, and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with a sheaf of rings. Zariski topology For any ideal I of R, define V_I to be the set of prime ideals containing I. We can put a topology on \operatorname(R) by defining the collection of closed sets to be :\big\. This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows: For f\in R, define D_f to be the set of prime ideals of R not containing f. Then each D_f is an open subset of \operatorname(R), and \big\ is a basis for the Zariski topology. \operatorname(R) is a compact space, but almost never Hausdorff: In fact, the maximal ideals in R are precisely the closed points in this topology. By the same reasoning, \operatorname(R) is not, in general, a T1 space. However, \operatorna ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Locally Path-connected
In topology and other branches of mathematics, a topological space ''X'' is locally connected if every point admits a neighbourhood basis consisting of open connected sets. As a stronger notion, the space ''X'' is locally path connected if every point admits a neighbourhood basis consisting of open path connected sets. Background Throughout the history of topology, connectedness and compactness have been two of the most widely studied topological properties. Indeed, the study of these properties even among subsets of Euclidean space, and the recognition of their independence from the particular form of the Euclidean metric, played a large role in clarifying the notion of a topological property and thus a topological space. However, whereas the structure of ''compact'' subsets of Euclidean space was understood quite early on via the Heine–Borel theorem, ''connected'' subsets of \R^n (for ''n'' > 1) proved to be much more complicated. Indeed, while any compact Hausdor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Path-connected
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union of two or more disjoint non-empty open subsets. Connectedness is one of the principal topological properties that distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a subspace of X. Some related but stronger conditions are path connected, simply connected, and n-connected. Another related notion is locally connected, which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topological space X the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Locally Connected
In topology and other branches of mathematics, a topological space ''X'' is locally connected if every point admits a neighbourhood basis consisting of open connected sets. As a stronger notion, the space ''X'' is locally path connected if every point admits a neighbourhood basis consisting of open path connected sets. Background Throughout the history of topology, connectedness and compactness have been two of the most widely studied topological properties. Indeed, the study of these properties even among subsets of Euclidean space, and the recognition of their independence from the particular form of the Euclidean metric, played a large role in clarifying the notion of a topological property and thus a topological space. However, whereas the structure of ''compact'' subsets of Euclidean space was understood quite early on via the Heine–Borel theorem, ''connected'' subsets of \R^n (for ''n'' > 1) proved to be much more complicated. Indeed, while any compact Hausdorff sp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Connected Space
In topology and related branches of mathematics, a connected space is a topological space that cannot be represented as the union (set theory), union of two or more disjoint set, disjoint Empty set, non-empty open (topology), open subsets. Connectedness is one of the principal topological properties that distinguish topological spaces. A subset of a topological space X is a if it is a connected space when viewed as a Subspace topology, subspace of X. Some related but stronger conditions are #Path connectedness, path connected, Simply connected space, simply connected, and N-connected space, n-connected. Another related notion is Locally connected space, locally connected, which neither implies nor follows from connectedness. Formal definition A topological space X is said to be if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected. A subset of a topological space is said to be connected if it is connected under its subspace topology. So ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Genus–degree Formula
In classical algebraic geometry, the genus–degree formula relates the degree d of an irreducible plane curve C with its arithmetic genus g via the formula: :g=\frac12 (d-1)(d-2). Here "plane curve" means that C is a closed curve in the projective plane \mathbb^2. If the curve is non-singular the geometric genus and the arithmetic genus are equal, but if the curve is singular, with only ordinary singularities, the geometric genus is smaller. More precisely, an ordinary singularity of multiplicity r decreases the genus by \frac12 r(r-1). Motivation Elliptic curves are parametrized by Weierstrass elliptic functions. Since these parameterizing functions are doubly periodic, the elliptic curve can be identified with a period parallelogram with the sides glued together ''i.e.'' a torus. So the genus of an elliptic curve is 1. The genus–degree formula is a generalization of this fact to higher genus curves. The basic idea would be to use higher degree equations. Consider the quar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homogeneous Polynomial
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, x^5 + 2 x^3 y^2 + 9 x y^4 is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5. The polynomial x^3 + 3 x^2 y + z^7 is not homogeneous, because the sum of exponents does not match from term to term. The function defined by a homogeneous polynomial is always a homogeneous function. An algebraic form, or simply form, is a function defined by a homogeneous polynomial.However, as some authors do not make a clear distinction between a polynomial and its associated function, the terms ''homogeneous polynomial'' and ''form'' are sometimes considered as synonymous. A binary form is a form in two variables. A ''form'' is also a function defined on a vector space, which may be expressed as a homogeneous function of the coordinates over any basis. A polynomial of degree 0 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Normal Crossing Divisor
In algebraic geometry a normal crossing singularity is a singularity similar to a union of coordinate hyperplanes. The term can be confusing because normal crossing singularities are not usually normal schemes (in the sense of the local rings being integrally closed). Normal crossing divisors Normal crossing divisors are a class of divisors which generalize the smooth divisors. Intuitively they cross only in a transversal way. Let ''A'' be an algebraic variety, and Z= \bigcup_i Z_i a reduced Cartier divisor, with Z_i its irreducible components. Then ''Z'' is called a smooth normal crossing divisor if either :(i) ''A'' is a curve, or :(ii) all Z_i are smooth, and for each component Z_k, (Z-Z_k), _ is a smooth normal crossing divisor. Equivalently, one says that a reduced divisor has normal crossings if each point étale locally looks like the intersection of coordinate hyperplanes. Normal crossing singularity A normal crossings singularity is a point in an algebraic variet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scheme (mathematics)
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations and define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise '' Éléments de géométrie algébrique'' (EGA); one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem. Schemes elaborate the fundamental idea that an a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homeomorphism
In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. Very roughly speaking, a topological space is a geometric object, and a homeomorphism results from a continuous deformation of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this description can be misleading. Some continuous deformations do not produce homeomorphisms, such as the deformation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nilradical Of A Ring
In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements: :\mathfrak_R = \lbrace f \in R \mid f^m=0 \text m\in\mathbb_\rbrace. It is thus the radical of the zero ideal. If the nilradical is the zero ideal, the ring is called a reduced ring. The nilradical of a commutative ring is the intersection of all prime ideals. In the non-commutative ring case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways; see the article Radical of a ring for more on this. The nilradical of a Lie algebra is similarly defined for Lie algebras. Commutative rings The nilradical of a commutative ring is the set of all nilpotent elements in the ring, or equivalently the radical of the zero ideal. This is an ideal because the sum of any two nilpotent elements is nilpotent (by the binomial formula), and the product of any element with a nilpotent element is nilpotent (by commu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |