HOME





Hylomorphism (computer Science)
In computer science, and in particular functional programming, a hylomorphism is a Recursion (computer science), recursive function, corresponding to the function composition, composition of an anamorphism (which first builds a set of results; also known as 'unfolding') followed by a catamorphism (which then fold (higher-order function), folds these results into a final return value). Fusion of these two recursive computations into a single recursive pattern then avoids building the intermediate data structure. This is an example of deforestation (computer science), deforestation, a program optimization strategy. A related type of function is a metamorphism, which is a catamorphism followed by an anamorphism. Formal definition A hylomorphism h : A \rightarrow C can be defined in terms of its separate anamorphic and catamorphic parts. The anamorphic part can be defined in terms of a arity, unary function g : A \rightarrow B \times A defining the list of elements in B by repeated ap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Computer Science
Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, applied disciplines (including the design and implementation of Computer architecture, hardware and Software engineering, software). Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Haskell (programming Language)
Haskell () is a General-purpose programming language, general-purpose, static typing, statically typed, purely functional programming, purely functional programming language with type inference and lazy evaluation. Designed for teaching, research, and industrial applications, Haskell pioneered several programming language #Features, features such as type classes, which enable type safety, type-safe operator overloading, and Monad (functional programming), monadic input/output (IO). It is named after logician Haskell Curry. Haskell's main implementation is the Glasgow Haskell Compiler (GHC). Haskell's Semantics (computer science), semantics are historically based on those of the Miranda (programming language), Miranda programming language, which served to focus the efforts of the initial Haskell working group. The last formal specification of the language was made in July 2010, while the development of GHC continues to expand Haskell via language extensions. Haskell is used in a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Anamorphism
In computer programming, an anamorphism is a function that generates a sequence by repeated application of the function to its previous result. You begin with some value A and apply a function f to it to get B. Then you apply f to B to get C, and so on until some terminating condition is reached. The anamorphism is the function that generates the list of A, B, C, etc. You can think of the anamorphism as unfolding the initial value into a sequence. The above layman's description can be stated more formally in category theory: the anamorphism of a coinductive type denotes the assignment of a coalgebra to its unique morphism to the final coalgebra of an endofunctor. These objects are used in functional programming as '' unfolds''. The categorical dual (aka opposite) of the anamorphism is the catamorphism. Anamorphisms in functional programming In functional programming, an anamorphism is a generalization of the concept of '' unfolds'' on coinductive lists. Formally, anamo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Catamorphism
In functional programming, the concept of catamorphism (from the Ancient Greek: "downwards" and "form, shape") denotes the unique homomorphism from an initial algebra into some other algebra. Catamorphisms provide generalizations of '' folds'' of lists to arbitrary algebraic data types, which can be described as initial algebras. The dual concept is that of anamorphism that generalize ''unfolds''. A hylomorphism is the composition of an anamorphism followed by a catamorphism. Definition Consider an initial F-algebra (A, in) for some endofunctor F of some category into itself. Here in is a morphism from FA to A. Since it is initial, we know that whenever (X, f) is another F-algebra, i.e. a morphism f from FX to X, there is a unique homomorphism h from (A, in) to (X, f). By the definition of the category of F-algebra, this h corresponds to a morphism from A to X, conventionally also denoted h, such that h \circ in = f \circ Fh. In the context of F-algebra, the uniquely speci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

F-algebra
In mathematics, specifically in category theory, ''F''-algebras generalize the notion of algebraic structure. Rewriting the algebraic laws in terms of morphisms eliminates all references to quantified elements from the axioms, and these algebraic laws may then be glued together in terms of a single functor ''F'', the ''Signature (logic), signature''. ''F''-algebras can also be used to represent data structures used in Mathematical programming, programming, such as List (computing), lists and Tree (data structure), trees. The main related concepts are Initial and terminal objects, initial ''F''-algebras which may serve to encapsulate the induction principle, and the Dual (category theory), dual construction F-coalgebra, ''F''-coalgebras. Definition If C is a Category (mathematics), category, and F : C \rightarrow C is an endofunctor of C, then an F-algebra is a tuple (A, \alpha), where A is an Object (category theory), object of C and \alpha is a C-morphism F(A) \rightarrow A. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Although many examples of morphisms are structure-preserving maps, morphisms need not to be maps, but they can be composed in a way that is similar to function composition. Morphisms and objects are constituents of a category. Morphisms, also called ''maps'' or ''arrows'', relate two objects called the ''source'' and the ''target'' of the morphism. There is a partial operation, called ''composition'', on the morphisms of a category that is defined if the target of the first morphism equals the source of the second morphism. The composition of morphisms behaves like function composition ( associativity of composition when it is defined, and existence of an identity morphism for every object). Morphisms and categories recur in much of co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Summation
In mathematics, summation is the addition of a sequence of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined. Summations of infinite sequences are called series. They involve the concept of limit, and are not considered in this article. The summation of an explicit sequence is denoted as a succession of additions. For example, summation of is denoted , and results in 9, that is, . Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands. Summation of a sequence of only one summand results in the summand itself. Summation of an empty sequence (a sequence with no elements), by convention, results in 0. Very often, the elements of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




Leaf Node
In computer science, a tree is a widely used abstract data type that represents a hierarchical tree structure with a set of connected nodes. Each node in the tree can be connected to many children (depending on the type of tree), but must be connected to exactly one parent, except for the ''root'' node, which has no parent (i.e., the root node as the top-most node in the tree hierarchy). These constraints mean there are no cycles or "loops" (no node can be its own ancestor), and also that each child can be treated like the root node of its own subtree, making recursion a useful technique for tree traversal. In contrast to linear data structures, many trees cannot be represented by relationships between neighboring nodes (parent and children nodes of a node under consideration, if they exist) in a single straight line (called edge or link between two adjacent nodes). Binary trees are a commonly used type, which constrain the number of children for each parent to at most two. When ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Fib 4
Fib or FIB may refer to: Places * Kingdom of Fib, now Fife, Scotland Arts, entertainment, and media * Fib (poetry), a form of poetry * Festival Internacional de Benicàssim, a Spanish music festival * '' Folket i Bild'', a Swedish news magazine Enterprises * First International Bank (Liberia) * First Investment Bank, a Bulgarian bank Medicine * Fascia iliaca block * Fibrillarin * Fibrillation * Fibrinogen * Fibula Science and technology * FiB index, or Fisheries in Balance index * Flying inflatable boat * Focused ion beam * Forwarding information base * Fluoride-ion Battery Sport * Federation of International Bandy * Fédération Internationale de Boules, the highest international authority of bocce sport Other uses * Fib (lie), a form of bending the truth that is usually forgiven because it is not intended to deceive * Barcelona School of Informatics (Catalan: ') * Fires brigade, of the United States Army * International Federation for Structural Concrete (French: ) * U ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Fibonacci Sequence
In mathematics, the Fibonacci sequence is a Integer sequence, sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 and some (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the sequence begins : 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... The Fibonacci numbers were first described in Indian mathematics as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths. They are named after the Italian mathematician Leonardo of Pisa, also known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book . Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the ''Fibonacci Quarterly''. Appli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Term (logic)
In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. This is analogous to natural language, where a noun phrase refers to an object and a whole sentence refers to a fact. A first-order term is recursively constructed from constant symbols, variable symbols, and function symbols. An expression formed by applying a predicate symbol to an appropriate number of terms is called an atomic formula, which evaluates to true or false in bivalent logics, given an interpretation. For example, is a term built from the constant 1, the variable , and the binary function symbols and ; it is part of the atomic formula which evaluates to true for each real-numbered value of . Besides in logic, terms play important roles in universal algebra, and rewriting systems. Definition Given a set ''V'' of variable symbols, a set ''C'' of constant symbols and sets ''F''''n'' of ''n''-ary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Element (mathematics)
In mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ..., an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called containing the first four positive integers (A = \), one could say that "3 is an element of ", expressed notationally as 3 \in A . Sets Writing A = \ means that the elements of the set are the numbers 1, 2, 3 and 4. Sets of elements of , for example \, are subsets of . Sets can themselves be elements. For example, consider the set B = \. The elements of are ''not'' 1, 2, 3, and 4. Rather, there are only three elements of , namely the numbers 1 and 2, and the set \. The elements of a set can be anything. For example the elements of the set C = \ are the color red, the number 12, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]