Homotopy Category Of Chain Complexes
In homological algebra in mathematics, the homotopy category ''K(A)'' of chain complexes in an additive category ''A'' is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of chain complexes ''Kom(A)'' of ''A'' and the derived category ''D(A)'' of ''A'' when ''A'' is abelian; unlike the former it is a triangulated category, and unlike the latter its formation does not require that ''A'' is abelian. Philosophically, while ''D(A)'' turns into isomorphisms any maps of complexes that are quasi-isomorphisms in ''Kom(A)'', ''K(A)'' does so only for those that are quasi-isomorphisms for a "good reason", namely actually having an inverse up to homotopy equivalence. Thus, ''K(A)'' is more understandable than ''D(A)''. Definitions Let ''A'' be an additive category. The homotopy category ''K(A)'' is based on the following definition: if we have complexes ''A'', ''B'' and maps ''f'', ''g'' from ''A'' to ''B'', a chain homoto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homological Algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of module (mathematics), modules and Syzygy (mathematics), syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through both their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariant (mathematics), invariants of ring (mathematics), rings, modules, topological spaces, and other 'tan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quotient
In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a division (in the case of Euclidean division), or as a fraction or a ratio (in the case of proper division). For example, when dividing 20 (the ''dividend'') by 3 (the ''divisor''), the ''quotient'' is "6 with a remainder of 2" in the Euclidean division sense, and 6\tfrac in the proper division sense. In the second sense, a quotient is simply the ratio of a dividend to its divisor. Notation The quotient is most frequently encountered as two numbers, or two variables, divided by a horizontal line. The words "dividend" and "divisor" refer to each individual part, while the word "quotient" refers to the whole. \dfrac \quad \begin & \leftarrow \text \\ & \leftarrow \text \end \Biggr \} \leftarrow \text Integer part definition The quo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Graded Category
In mathematics, especially homological algebra, a differential graded category, often shortened to dg-category or DG category, is a category whose morphism sets are endowed with the additional structure of a differential graded \Z-module. In detail, this means that \operatorname(A,B), the morphisms from any object ''A'' to another object ''B'' of the category is a direct sum :\bigoplus_\operatorname_n(A,B) and there is a differential ''d'' on this graded group, i.e., for each ''n'' there is a linear map :d\colon \operatorname_n(A,B) \rightarrow \operatorname_(A,B), which has to satisfy d \circ d = 0. This is equivalent to saying that \operatorname(A,B) is a cochain complex. Furthermore, the composition of morphisms \operatorname(A,B) \otimes \operatorname(B,C) \rightarrow \operatorname(A,C) is required to be a map of complexes, and for all objects ''A'' of the category, one requires d(\operatorname_A) = 0. Examples * Any additive category may be considered to be a DG-category by i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mapping Cone (homological Algebra)
In homological algebra, the mapping cone is a construction on a map of chain complexes inspired by the analogous construction in topology. In the theory of triangulated categories it is a kind of combined kernel and cokernel: if the chain complexes take their terms in an abelian category, so that we can talk about cohomology, then the cone of a map ''f'' being acyclic means that the map is a quasi-isomorphism; if we pass to the derived category of complexes, this means that ''f'' is an isomorphism there, which recalls the familiar property of maps of groups, modules over a ring, or elements of an arbitrary abelian category that if the kernel and cokernel both vanish, then the map is an isomorphism. If we are working in a t-category, then in fact the cone furnishes both the kernel and cokernel of maps between objects of its core. Definition The cone may be defined in the category of cochain complexes over any additive category (i.e., a category whose morphisms form abelian gr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chain Complexes
In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or modules) and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels. A cochain complex is similar to a chain complex, except that its homomorphisms are in the opposite direction. The homology of a cochain complex is called its cohomology. In algebraic topology, the singular chain complex of a topological space X is constructed using continuous maps from a simplex to X, and the homomorphisms of the chain complex capture how these maps restrict to the boundary of the simplex. The homology of this chain complex is called the singular homology of X, and is a commonly used invariant of a topological space. Chain complexes are studied in homological algebra, but are used in several areas of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Singular Chain
In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space ''X'', the so-called homology groups H_n(X). Intuitively, singular homology counts, for each dimension ''n'', the ''n''-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions (see also the related theory simplicial homology). In brief, singular homology is constructed by taking maps of the standard ''n''-simplex to a topological space, and composing them into formal sums, called singular chains. The boundary operation – mapping each ''n''-dimensional simplex to its (''n''−1)-dimensional boundary – induces the singular chain complex. The singular homology is then the homology of the chain complex. The resulting ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homotopic
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (, ; , ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra. Formal definition Formally, a homotopy between two continuous functions ''f'' and ''g'' from a topological space ''X'' to a topological space ''Y'' is defined to be a continuous function H: X \times ,1\to Y from the product of the space ''X'' with the unit interval , 1to ''Y'' such that H(x,0) = f(x) and H(x,1) = g(x) for all x \in X. If we think of the second p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chain Complex
In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups (or module (mathematics), modules) and a sequence of group homomorphism, homomorphisms between consecutive groups such that the image (mathematics), image of each homomorphism is included in the kernel (algebra)#Group homomorphisms, kernel of the next. Associated to a chain complex is its Homology (mathematics), homology, which describes how the images are included in the kernels. A cochain complex is similar to a chain complex, except that its homomorphisms are in the opposite direction. The homology of a cochain complex is called its cohomology. In algebraic topology, the singular chain complex of a topological space X is constructed using continuous function#continuous functions between topological spaces, continuous maps from a simplex to X, and the homomorphisms of the chain complex capture how these maps restrict to the boundary of the simplex. The homology of this chain co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chain Homotopy
In homological algebra in mathematics, the homotopy category ''K(A)'' of chain complexes in an additive category ''A'' is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of chain complexes ''Kom(A)'' of ''A'' and the derived category ''D(A)'' of ''A'' when ''A'' is abelian; unlike the former it is a triangulated category, and unlike the latter its formation does not require that ''A'' is abelian. Philosophically, while ''D(A)'' turns into isomorphisms any maps of complexes that are quasi-isomorphisms in ''Kom(A)'', ''K(A)'' does so only for those that are quasi-isomorphisms for a "good reason", namely actually having an inverse up to homotopy equivalence. Thus, ''K(A)'' is more understandable than ''D(A)''. Definitions Let ''A'' be an additive category. The homotopy category ''K(A)'' is based on the following definition: if we have complexes ''A'', ''B'' and maps ''f'', ''g'' from ''A'' to ''B'', a chain homoto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |