Homogeneous (large Cardinal Property)
   HOME
*





Homogeneous (large Cardinal Property)
In set theory and in the context of a large cardinal property, a subset, ''S'', of ''D'' is homogeneous for a function ''f'' if ''f'' is constant in finite subsets of ''S''. More precisely, given a set ''D'', let \mathcal_(D) be the set of all finite subsets of ''D'' (see Powerset#Subsets of limited cardinality) and let f: \mathcal_(D) \to B be a function defined in this set. On these conditions, ''S'' is homogeneous for ''f'' if, for every natural number ''n'', ''f'' is constant in the set \mathcal_(S). That is, ''f'' is constant on the unordered ''n''-tuples of elements of ''S''. See also *Ramsey's theorem *Ramsey_cardinal In mathematics, a Ramsey cardinal is a certain kind of large cardinal number introduced by and named after Frank P. Ramsey, whose theorem establishes that ω enjoys a certain property that Ramsey cardinals generalize to the uncountable case. Let ... {{settheory-stub Large cardinals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Cardinal Property
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct philo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Powerset
In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of is variously denoted as , , , \mathbb(S), or . The notation , meaning the set of all functions from S to a given set of two elements (e.g., ), is used because the powerset of can be identified with, equivalent to, or bijective to the set of all the functions from to the given two elements set. Any subset of is called a ''family of sets'' over . Example If is the set , then all the subsets of are * (also denoted \varnothing or \empty, the empty set or the null set) * * * * * * * and hence the power set of is . Properties If is a finite set with the cardinality (i.e., the number of all elements in the set is ), then the number of all the subsets of is . This fact as well ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ramsey's Theorem
In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say, blue and red), let and be any two positive integers. Ramsey's theorem states that there exists a least positive integer for which every blue-red edge colouring of the complete graph on vertices contains a blue clique on vertices or a red clique on vertices. (Here signifies an integer that depends on both and .) Ramsey's theorem is a foundational result in combinatorics. The first version of this result was proved by F. P. Ramsey. This initiated the combinatorial theory now called Ramsey theory, that seeks regularity amid disorder: general conditions for the existence of substructures with regular properties. In this application it is a question of the existence of ''monochromatic subsets'', that is, subsets of connected edges of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ramsey Cardinal
In mathematics, a Ramsey cardinal is a certain kind of large cardinal number introduced by and named after Frank P. Ramsey, whose theorem establishes that ω enjoys a certain property that Ramsey cardinals generalize to the uncountable case. Let 'κ''sup><ω denote the set of all finite subsets of ''κ''. A cardinal number ''κ'' is called Ramsey if, for every function :''f'': 'κ''sup><ω → there is a set ''A'' of cardinality ''κ'' that is homogeneous for ''f''. That is, for every ''n'', the function ''f'' is constant on the subsets of cardinality ''n'' from ''A''. A cardinal ''κ'' is called ineffably Ramsey if ''A'' can be chosen to be a stationary subset of ''κ''. A cardinal ''κ'' is called virtually Ramsey if for every function :''f'': 'κ''sup><ω → there is ''C'', a closed and unbounded subset of ''κ'', so that for every ''λ'' in ''C'' of uncountable