HOME
*





Homicidal Chauffeur Problem
In game theory, the homicidal chauffeur problem is a mathematical pursuit problem which pits a hypothetical runner, who can only move slowly, but is highly maneuverable, against the driver of a motor vehicle, which is much faster but far less maneuverable, who is attempting to run him down. Both runner and driver are assumed to never tire. The question to be solved is: under what circumstances, and with what strategy, can the driver of the car guarantee that he can always catch the pedestrian, or the pedestrian guarantee that he can indefinitely elude the car? The problem is often used as an unclassified proxy for missile defence and other military targeting, allowing scientists to publish on it without security implications.{{citation needed, date=September 2020 The problem was proposed by Rufus Isaacs in a 1951 report for the RAND Corporation, and in the book ''Differential Games''.R. Isaacs, ''Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Game Theory
Game theory is the study of mathematical models of strategic interactions among rational agents. Myerson, Roger B. (1991). ''Game Theory: Analysis of Conflict,'' Harvard University Press, p.&nbs1 Chapter-preview links, ppvii–xi It has applications in all fields of social science, as well as in logic, systems science and computer science. Originally, it addressed two-person zero-sum games, in which each participant's gains or losses are exactly balanced by those of other participants. In the 21st century, game theory applies to a wide range of behavioral relations; it is now an umbrella term for the science of logical decision making in humans, animals, as well as computers. Modern game theory began with the idea of mixed-strategy equilibria in two-person zero-sum game and its proof by John von Neumann. Von Neumann's original proof used the Brouwer fixed-point theorem on continuous mappings into compact convex sets, which became a standard method in game theory and mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Martin Gardner
Martin Gardner (October 21, 1914May 22, 2010) was an American popular mathematics and popular science writer with interests also encompassing scientific skepticism, micromagic, philosophy, religion, and literatureespecially the writings of Lewis Carroll, L. Frank Baum, and G. K. Chesterton.Martin (2010) He was also a leading authority on Lewis Carroll. ''The Annotated Alice'', which incorporated the text of Carroll's two Alice books, was his most successful work and sold over a million copies. He had a lifelong interest in magic and illusion and in 1999, MAGIC magazine named him as one of the "100 Most Influential Magicians of the Twentieth Century". He was considered the doyen of American puzzlers. He was a prolific and versatile author, publishing more than 100 books. Gardner was best known for creating and sustaining interest in recreational mathematicsand by extension, mathematics in generalthroughout the latter half of the 20th century, principally through his "Mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calculus Of Variations
The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist. Such solutions are known as ''geodesics''. A related problem is posed by Fermat's principle: light follows the path of shortest optical length connecting two points, which depends up ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recreational Mathematics
Recreational mathematics is mathematics carried out for recreation (entertainment) rather than as a strictly research and application-based professional activity or as a part of a student's formal education. Although it is not necessarily limited to being an endeavor for amateurs, many topics in this field require no knowledge of advanced mathematics. Recreational mathematics involves mathematical puzzles and games, often appealing to children and untrained adults, inspiring their further study of the subject. The Mathematical Association of America (MAA) includes recreational mathematics as one of its seventeen Special Interest Groups, commenting: Mathematical competitions (such as those sponsored by mathematical associations) are also categorized under recreational mathematics. Topics Some of the more well-known topics in recreational mathematics are Rubik's Cubes, magic squares, fractals, logic puzzles and mathematical chess problems, but this area of mathematics incl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pursuit–evasion
Pursuit–evasion (variants of which are referred to as cops and robbers and graph searching) is a family of problems in mathematics and computer science in which one group attempts to track down members of another group in an environment. Early work on problems of this type modeled the environment geometrically. In 1976, Torrence Parsons introduced a formulation whereby movement is constrained by a graph. The geometric formulation is sometimes called continuous pursuit–evasion, and the graph formulation discrete pursuit–evasion (also called graph searching). Current research is typically limited to one of these two formulations. Discrete formulation In the discrete formulation of the pursuit–evasion problem, the environment is modeled as a graph. Problem definition There are innumerable possible variants of pursuit–evasion, though they tend to share many elements. A typical, basic example is as follows (cops and robber games): Pursuers and evaders occupy nodes of a graph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Princess And Monster Game
In game theory, a princess and monster game is a pursuit–evasion game played by two players in a region. Formal Definition In his book ''Differential Games'' (1965), Rufus Isaacs defined the game as: This game remained a well-known open problem until it was solved by Shmuel Gal in the late 1970s. His optimal strategy for the princess is to move to a random location in the room and stay still for a time interval which is neither too short nor too long, before going to another (independent) random location and repeating the procedure. The proposed optimal search strategy for the monster is based on subdividing the room into many narrow rectangles, picking a rectangle at random and searching it in some specific way, after some time picking another rectangle randomly and independently, and so on. Princess and monster games can be played on a pre-selected graph. It can be demonstrated that for any finite graph an optimal mixed search strategy exists that results in a finite p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Angel Problem
The angel problem is a question in combinatorial game theory proposed by John Horton Conway. The game is commonly referred to as the Angels and Devils game.John H. Conway, The angel problem', in: Richard Nowakowski (editor) ''Games of No Chance'', volume 29 of MSRI Publications, pages 3–12, 1996. The game is played by two players called the angel and the devil. It is played on an infinite chessboard (or equivalently the points of a 2D lattice). The angel has a power ''k'' (a natural number 1 or higher), specified before the game starts. The board starts empty with the angel in one square. On each turn, the angel jumps to a different empty square which could be reached by at most ''k'' moves of a chess king, i.e. the distance from the starting square is at most ''k'' in the infinity norm. The devil, on its turn, may add a block on any single square not containing the angel. The angel may leap over blocked squares, but cannot land on them. The devil wins if the angel is unable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apollonius Pursuit Problem
The circles of Apollonius are any of several sets of circles associated with Apollonius of Perga, a renowned Greek geometer. Most of these circles are found in planar Euclidean geometry, but analogs have been defined on other surfaces; for example, counterparts on the surface of a sphere can be defined through stereographic projection. The main uses of this term are fivefold: # Apollonius showed that a circle can be defined as the set of points in a plane that have a specified ''ratio'' of distances to two fixed points, known as foci. This Apollonian circle is the basis of the Apollonius pursuit problem. It is a particular case of the first family described in #2. # The Apollonian circles are two families of mutually orthogonal circles. The first family consists of the circles with all possible distance ratios to two fixed foci (the same circles as in #1), whereas the second family consists of all possible circles that pass through both foci. These circles form the basis of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Level-set Method
Level-set methods (LSM) are a conceptual framework for using level sets as a tool for numerical analysis of surfaces and shapes. The advantage of the level-set model is that one can perform numerical computations involving curves and surfaces on a fixed Cartesian grid without having to parameterize these objects (this is called the ''Eulerian approach''). Also, the level-set method makes it very easy to follow shapes that change topology, for example, when a shape splits in two, develops holes, or the reverse of these operations. All these make the level-set method a great tool for modeling time-varying objects, like inflation of an airbag, or a drop of oil floating in water. The figure on the right illustrates several important ideas about the level-set method. In the upper-left corner we see a shape; that is, a bounded region with a well-behaved boundary. Below it, the red surface is the graph of a level set function \varphi determining this shape, and the flat blue region r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variational Calculus
The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist. Such solutions are known as ''geodesics''. A related problem is posed by Fermat's principle: light follows the path of shortest optical length connecting two points, which depends up ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Model Problem
A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models can be divided into physical models (e.g. a model plane) and abstract models (e.g. mathematical expressions describing behavioural patterns). Abstract or conceptual models are central to philosophy of science, as almost every scientific theory effectively embeds some kind of model of the physical or human sphere. In commerce, "model" can refer to a specific design of a product as displayed in a catalogue or show room (e.g. Ford Model T), and by extension to the sold product itself. Types of models include: Physical model A physical model (most commonly referred to simply as a model but in this context distinguished from a conceptual model) is a smaller or larger physical copy of an object. The object being modelled may be small (for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]