Holmes–Thompson Volume
   HOME
*





Holmes–Thompson Volume
In geometry of normed spaces, the Holmes–Thompson volume is a notion of volume that allows to compare sets contained in different normed spaces (of the same dimension). It was introduced by Raymond D. Holmes and Anthony Charles Thompson. Definition The Holmes–Thompson volume \operatorname_\text(A) of a measurable set A\subseteq R^n in a normed space (\mathbb^n,\, -\, ) is defined as the 2''n''-dimensional measure of the product set A\times B^*, where B^* \subseteq \mathbb^n is the dual unit ball of \, -\, (the unit ball of the dual norm \, -\, ^* ). Symplectic (coordinate-free) definition The Holmes–Thompson volume can be defined without coordinates: if A\subseteq V is a measurable set in an ''n''-dimensional real normed space (V,\, -\, ), then its Holmes–Thompson volume is defined as the absolute value of the integral of the volume form \frac 1\overbrace^n over the set A\times B^* , :\operatorname_(A)=\left, \int_\frac1\omega^n\ where \omega is the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normed Space
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real (physical) world. A norm is a real-valued function defined on the vector space that is commonly denoted x\mapsto \, x\, , and has the following properties: #It is nonnegative, meaning that \, x\, \geq 0 for every vector x. #It is positive on nonzero vectors, that is, \, x\, = 0 \text x = 0. # For every vector x, and every scalar \alpha, \, \alpha x\, = , \alpha, \, \, x\, . # The triangle inequality holds; that is, for every vectors x and y, \, x+y\, \leq \, x\, + \, y\, . A norm induces a distance, called its , by the formula d(x,y) = \, y-x\, . which makes any normed vector space into a metric space and a topological vector space. If this metric space is complete then the normed space is a Banach space. Every nor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Liouville's Theorem (Hamiltonian)
In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that ''the phase-space distribution function is constant along the trajectories of the system''—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time. This time-independent density is in statistical mechanics known as the classical a priori probability. There are related mathematical results in symplectic topology and ergodic theory; systems obeying Liouville's theorem are examples of incompressible dynamical systems. There are extensions of Liouville's theorem to stochastic systems. Liouville equations The Liouville equation describes the time evolution of the ''phase space distribution function''. Although the equation is usually referred to as the "Liouville equation", Josiah Willard Gibbs was the first to recognize the impo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finsler Geometry
In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold where a (possibly asymmetric) Minkowski functional is provided on each tangent space , that enables one to define the length of any smooth curve as :L(\gamma) = \int_a^b F\left(\gamma(t), \dot(t)\right)\,\mathrmt. Finsler manifolds are more general than Riemannian manifolds since the tangent norms need not be induced by inner products. Every Finsler manifold becomes an intrinsic quasimetric space when the distance between two points is defined as the infimum length of the curves that join them. named Finsler manifolds after Paul Finsler, who studied this geometry in his dissertation . Definition A Finsler manifold is a differentiable manifold together with a Finsler metric, which is a continuous nonnegative function defined on the tangent bundle so that for each point of , * for every two vectors tangent to at ( subadditivity). * for all (but not necessaril ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Measure Theory
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations (such as spectral measures and projection-valued measures) of measure are widely used in quantum physics and physics in general. The intuition behind this concept dates back to ancient Greece, when Archimedes tried to calculate the area of a circle. But it was not until the late 19th and early 20th centuries that measure theory became a branch of mathematics. The foundations of modern measure theory were laid in the works of Émile Borel, Henri Lebesgue, Nikolai Luzin, Johann Radon, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normed Spaces
In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real (physical) world. A norm is a real-valued function defined on the vector space that is commonly denoted x\mapsto \, x\, , and has the following properties: #It is nonnegative, meaning that \, x\, \geq 0 for every vector x. #It is positive on nonzero vectors, that is, \, x\, = 0 \text x = 0. # For every vector x, and every scalar \alpha, \, \alpha x\, = , \alpha, \, \, x\, . # The triangle inequality holds; that is, for every vectors x and y, \, x+y\, \leq \, x\, + \, y\, . A norm induces a distance, called its , by the formula d(x,y) = \, y-x\, . which makes any normed vector space into a metric space and a topological vector space. If this metric space is complete then the normed space is a Banach space. Every normed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Blaschke-Santaló Inequality
In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the balls and solid ellipsoids; this is now known as the Blaschke–Santaló inequality. The still-unsolved Mahler conjecture states that the minimum possible Mahler volume is attained by a hypercube. Definition A convex body in Euclidean space is defined as a compact convex set with non-empty interior. If B is a centrally symmetric convex body in n-dimensional Euclidean space, the polar body B^\circ is another centrally symmetric body in the same space, defined as the set \left\. The Mahler volume of B is the product of the volumes of B and B^\circ.. If T is an invertible linear transformation, then (TB)^\circ = (T^)^\ast B^\circ. Applying T to B multiplies its volum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hausdorff Measure
In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in ,∞to each set in \R^n or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set (if the set is finite) or ∞ if the set is infinite. Likewise, the one-dimensional Hausdorff measure of a simple curve in \R^n is equal to the length of the curve, and the two-dimensional Hausdorff measure of a Lebesgue-measurable subset of \R^2 is proportional to the area of the set. Thus, the concept of the Hausdorff measure generalizes the Lebesgue measure and its notions of counting, length, and area. It also generalizes volume. In fact, there are ''d''-dimensional Hausdorff measures for any ''d'' ≥ 0, which is not necessarily an integer. These measures are fundame ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Volume Of An N-ball
In geometry, a ball is a region in a space comprising all points within a fixed distance, called the radius, from a given point; that is, it is the region enclosed by a sphere or hypersphere. An -ball is a ball in an -dimensional Euclidean space. The volume of a -ball is the Lebesgue measure of this ball, which generalizes to any dimension the usual volume of a ball in 3-dimensional space. The volume of a -ball of radius is R^nV_n, where V_n is the volume of the unit -ball, the -ball of radius . The real number V_n can be expressed via a two-dimension recurrence relation. Closed-form expressions involve the gamma, factorial, or double factorial function. The volume can also be expressed in terms of A_n, the area of the unit -sphere. Formulas The first volumes are as follows: Two-dimension recurrence relation As is proved below using a vector-calculus double integral in polar coordinates, the volume of an -ball of radius can be expressed recursively in terms o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamiltonian Dynamics
Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta''. Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a link between classical and quantum mechanics. Overview Phase space coordinates (p,q) and Hamiltonian H Let (M, \mathcal L) be a mechanical system with the configuration space M and the smooth Lagrangian \mathcal L. Select a standard coordinate system (\boldsymbol,\boldsymbol) on M. The quantities \textstyle p_i(\boldsymbol,\boldsymbol,t) ~\stackrel~ / are called ''momenta''. (Also ''generalized momenta'', ''conjugate momenta'', and ''canonical momenta''). For a time instant t, the Legendre transform ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Santaló's Formula
In differential geometry, Santaló's formula describes how to integrate a function on the unit sphere bundle of a Riemannian manifold by first integrating along every geodesic separately and then over the space of all geodesics. It is a standard tool in integral geometry and has applications in isoperimetric and rigidity results. The formula is named after Luis Santaló, who first proved the result in 1952. Formulation Let (M,\partial M,g) be a compact, oriented Riemannian manifold with boundary. Then for a function f: SM \rightarrow \mathbb , Santaló's formula takes the form : \int_ f(x,v) \, d\mu(x,v) = \int_ \left \int_0^ f(\varphi_t(x,v)) \, dt \right\langle v, \nu(x) \rangle \, d \sigma(x,v), where * (\varphi_t)_t is the geodesic flow and \tau(x,v) = \sup\ is the exit time of the geodesic with initial conditions (x,v)\in SM , * \mu and \sigma are the Riemannian volume forms with respect to the Sasaki metric on SM and \partial S M respectively ( \mu is als ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Asymmetric Norm
In mathematics, an asymmetric norm on a vector space is a generalization of the concept of a norm. Definition An asymmetric norm on a real vector space X is a function p : X \to , +\infty) that has the following properties: * Subadditivity, or the triangle inequality: p(x + y) \leq p(x) + p(y) \text x, y \in X. * Nonnegative homogeneity: p(rx) = r p(x) \text x \in X and every non-negative real number r \geq 0. * Positive definiteness: p(x) > 0 \text x = 0 Asymmetric norms differ from norms in that they need not satisfy the equality p(-x) = p(x). If the condition of positive definiteness is omitted, then p is an asymmetric seminorm. A weaker condition than positive definiteness is non-degeneracy: that for x \neq 0, at least one of the two numbers p(x) and p(-x) is not zero. Examples On the real line \R, the function p given by p(x) = \begin, x, , & x \leq 0; \\ 2 , x, , & x \geq 0; \end is an asymmetric norm but not a norm. In a real vector space X, the p_B of a convex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]