HOME
*





Hodge–Tate Module
In mathematics, a Hodge–Tate module is an analogue of a Hodge structure over p-adic fields. introduced and named Hodge–Tate structures using the results of on p-divisible groups. Definition Suppose that ''G'' is the absolute Galois group of a ''p''-adic field ''K''. Then ''G'' has a canonical cyclotomic character χ given by its action on the ''p''th power roots of unity. Let ''C'' be the completion of the algebraic closure of ''K''. Then a finite-dimensional vector space over ''C'' with a semi-linear action of the Galois group ''G'' is said to be of Hodge–Tate type if it is generated by the eigenvectors of integral powers of χ. See also *p-adic Hodge theory *Mumford–Tate group In algebraic geometry, the Mumford–Tate group (or Hodge group) ''MT''(''F'') constructed from a Hodge structure ''F'' is a certain algebraic group ''G''. When ''F'' is given by a rational representation of an algebraic torus, the definition of ' ... References * * * Algebraic geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hodge Structure
In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties (even if they are singular and non-complete) in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989). Hodge structures Definition of Hodge structures A pure Hodge structure of integer weight ''n'' consists of an abelian group H_ and a decomposition of its complexification ''H'' into a direct sum of complex subspaces H^, where p+q=n, with the property that the complex conjugate of H^ is H^: :H := H_\otimes_ \Complex = \bigop ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic Field
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a discret ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolute Galois Group
In mathematics, the absolute Galois group ''GK'' of a field ''K'' is the Galois group of ''K''sep over ''K'', where ''K''sep is a separable closure of ''K''. Alternatively it is the group of all automorphisms of the algebraic closure of ''K'' that fix ''K''. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group. (When ''K'' is a perfect field, ''K''sep is the same as an algebraic closure ''K''alg of ''K''. This holds e.g. for ''K'' of characteristic zero, or ''K'' a finite field.) Examples * The absolute Galois group of an algebraically closed field is trivial. * The absolute Galois group of the real numbers is a cyclic group of two elements (complex conjugation and the identity map), since C is the separable closure of R and ''C:Rnbsp;= 2. * The absolute Galois group of a finite field ''K'' is isomorphic to the group :: \hat = \varprojlim \mathbf/n\mathbf. (For the notation, see Inverse limit.) :The Frobenius automorphism Fr is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cyclotomic Character
In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring , its representation space is generally denoted by (that is, it is a representation ). ''p''-adic cyclotomic character Fix a prime, and let denote the absolute Galois group of the rational numbers. The roots of unity \mu_ = \left\ form a cyclic group of order p^n, generated by any choice of a primitive th root of unity . Since all of the primitive roots in \mu_ are Galois conjugate, the Galois group G_\mathbf acts on \mu_ by automorphisms. After fixing a primitive root of unity \zeta_ generating \mu_, any element of \mu_ can be written as a power of \zeta_, where the exponent is a unique element in (\mathbf/p^n\mathbf)^\times. One can thus write \sigma.\zeta := \sigma(\zeta) = \zeta_^ where a(\sigma,n) \in (\mathbf/p^n \mathbf)^\times is the unique element as above, depending on both \sigma and p. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Root Of Unity
In mathematics, a root of unity, occasionally called a Abraham de Moivre, de Moivre number, is any complex number that yields 1 when exponentiation, raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. Roots of unity can be defined in any field (mathematics), field. If the characteristic of a field, characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, converse (logic), conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field. General definition An ''th root of unity'', where is a positive integer, is a number satisfying the equation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Closure
In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky (1972) pp.74-76 or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field ''K'' is unique up to an isomorphism that fixes every member of ''K''. Because of this essential uniqueness, we often speak of ''the'' algebraic closure of ''K'', rather than ''an'' algebraic closure of ''K''. The algebraic closure of a field ''K'' can be thought of as the largest algebraic extension of ''K''. To see this, note that if ''L'' is any algebraic extension of ''K'', then the algebraic closure of ''L'' is also an algebraic closure of ''K'', and so ''L'' is contained within the algebraic closure of ''K''. The algebraic closure of ''K'' is also the smallest algebraically closed fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory. Definition Suppose that E is an extension of the field F (written as E/F and read "''E'' over ''F'' "). An automorphism of E/F is defined to be an automorphism of E that fixes F pointwise. In other words, an automorphism of E/F is an isomorphism \alpha:E\to E such that \alpha(x) = x for each x\in F. The set of all automorphisms of E/F forms a group with the operation of function composition. This group is sometimes denoted by \operatorname(E/F). If E/F is a Galois extension, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


P-adic Hodge Theory
In mathematics, ''p''-adic Hodge theory is a theory that provides a way to classify and study ''p''-adic Galois representations of characteristic 0 local fields with residual characteristic ''p'' (such as Q''p''). The theory has its beginnings in Jean-Pierre Serre and John Tate's study of Tate modules of abelian varieties and the notion of Hodge–Tate representation. Hodge–Tate representations are related to certain decompositions of ''p''-adic cohomology theories analogous to the Hodge decomposition, hence the name ''p''-adic Hodge theory. Further developments were inspired by properties of ''p''-adic Galois representations arising from the étale cohomology of varieties. Jean-Marc Fontaine introduced many of the basic concepts of the field. General classification of ''p''-adic representations Let ''K'' be a local field with residue field ''k'' of characteristic ''p''. In this article, a ''p-adic representation'' of ''K'' (or of ''GK'', the absolute Galois group of ''K'') wil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mumford–Tate Group
In algebraic geometry, the Mumford–Tate group (or Hodge group) ''MT''(''F'') constructed from a Hodge structure ''F'' is a certain algebraic group ''G''. When ''F'' is given by a rational representation of an algebraic torus, the definition of ''G'' is as the Zariski closure of the image in the representation of the circle group, over the rational numbers. introduced Mumford–Tate groups over the complex numbers under the name of Hodge groups. introduced the ''p''-adic analogue of Mumford's construction for Hodge–Tate modules, using the work of on p-divisible groups, and named them Mumford–Tate groups. Formulation The algebraic torus ''T'' used to describe Hodge structures has a concrete matrix representation, as the 2×2 invertible matrices of the shape that is given by the action of ''a''+''bi'' on the basis of the complex numbers C over R: :\begin a & b \\ -b & a \end. The circle group inside this group of matrices is the unitary group ''U''(1). Hodg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of The American Mathematical Society
The ''Journal of the American Mathematical Society'' (''JAMS''), is a quarterly peer-reviewed mathematical journal published by the American Mathematical Society. It was established in January 1988. Abstracting and indexing This journal is abstracted and indexed in:Indexing and archiving notes
2011. American Mathematical Society. * * * * ISI Ale ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]