HOME
*





Hobby–Rice Theorem
In mathematics, and in particular the necklace splitting problem, the Hobby–Rice theorem is a result that is useful in establishing the existence of certain solutions. It was proved in 1965 by Charles R. Hobby and John R. Rice; a simplified proof was given in 1976 by A. Pinkus. The theorem Given an integer ''n'', define a ''partition'' of the interval ,1as a sequence of numbers which divide the interval to n+1 subintervals: : 0=z_0 < z_1 < \dotsb < z_n < z_ = 1 Define a ''signed partition'' as a partition in which each subinterval i has an associated sign \delta_i: : \delta_1,\dotsc,\delta_\in\left\ The Hobby-Rice theorem says that for every ''n'' continuously integrable functions: : g_1,\dotsc,g_n\colon ,1longrightarrow\mathbb there exists a signed partition of ,1such that: : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Necklace Splitting Problem
Necklace splitting is a picturesque name given to several related problems in combinatorics and measure theory. Its name and solutions are due to mathematicians Noga Alon and Douglas B. West. The basic setting involves a necklace with beads of different colors. The necklace should be divided between several partners (e.g. thieves), such that each partner receives the same amount of every color. Moreover, the number of ''cuts'' should be as small as possible (in order to waste as little as possible of the metal in the links between the beads). Variants The following variants of the problem have been solved in the original paper: #Discrete splitting: The necklace has k\cdot n beads. The beads come in t different colors. There are k\cdot a_i beads of each color i, where a_i is a positive integer. Partition the necklace into k parts (not necessarily contiguous), each of which has exactly a_i beads of color ''i''. Use at most (k-1)t cuts. Note that if the beads of each color are c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John R
John R. (born John Richbourg, August 20, 1910 - February 15, 1986) was an American radio disc jockey who attained fame in the 1950s and 1960s for playing rhythm and blues music on Nashville radio station WLAC. He was also a notable record producer and artist manager. Richbourg was arguably the most popular and charismatic of the four announcers at WLAC who showcased popular African-American music in nightly programs from the late 1940s to the early 1970s. (The other three were Gene Nobles, Herman Grizzard, and Bill "Hoss" Allen.) Later rock music disc jockeys, such as Alan Freed and Wolfman Jack, mimicked Richbourg's practice of using speech that simulated African-American street language of the mid-twentieth century. Richbourg's highly stylized approach to on-air presentation of both music and advertising earned him popularity, but it also created identity confusion. Because Richbourg and fellow disc jockey Allen used African-American speech patterns, many listeners thought that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noga Alon
Noga Alon ( he, נוגה אלון; born 17 February 1956) is an Israeli mathematician and a professor of mathematics at Princeton University noted for his contributions to combinatorics and theoretical computer science, having authored hundreds of papers. Academic background Alon is a Professor of Mathematics at Princeton University and a Baumritter Professor Emeritus of Mathematics and Computer Science at Tel Aviv University, Israel. He graduated from the Hebrew Reali School in 1974 and received his Ph.D. in Mathematics at the Hebrew University of Jerusalem in 1983 and had visiting positions in various research institutes including MIT, The Institute for Advanced Study in Princeton, IBM Almaden Research Center, Bell Labs, Bellcore and Microsoft Research. He serves on the editorial boards of more than a dozen international journals; since 2008 he is the editor-in-chief of ''Random Structures and Algorithms''. He has given lectures in many conferences, including plenary addresses ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Advances In Mathematics
''Advances in Mathematics'' is a peer-reviewed scientific journal covering research on pure mathematics. It was established in 1961 by Gian-Carlo Rota. The journal publishes 18 issues each year, in three volumes. At the origin, the journal aimed at publishing articles addressed to a broader "mathematical community", and not only to mathematicians in the author's field. Herbert Busemann writes, in the preface of the first issue, "The need for expository articles addressing either all mathematicians or only those in somewhat related fields has long been felt, but little has been done outside of the USSR. The serial publication ''Advances in Mathematics'' was created in response to this demand." Abstracting and indexing The journal is abstracted and indexed in:Abstracting and Indexing
*

picture info

Fair Cake-cutting
Fair cake-cutting is a kind of fair division problem. The problem involves a ''heterogeneous'' resource, such as a cake with different toppings, that is assumed to be ''divisible'' – it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible. The division should be ''unanimously'' fair - each person should receive a piece that he or she believes to be a fair share. The "cake" is only a metaphor; procedures for fair cake-cutting can be used to divide various kinds of resources, such as land estates, advertisement space or broadcast time. The prototypical procedure for fair cake-cutting is divide and choose, which is mentioned already in the book of Genesis. It solves the fair division problem for two people. The modern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Consensus Halving
Exact division, also called consensus division, is a partition of a continuous resource ("cake") into some ''k'' pieces, such that each of ''n'' people with different tastes agree on the value of each of the pieces. For example, consider a cake which is half chocolate and half vanilla. Alice values only the chocolate and George values only the vanilla. The cake is divided into three pieces: one piece contains 20% of the chocolate and 20% of the vanilla, the second contains 50% of the chocolate and 50% of the vanilla, and the third contains the rest of the cake. This is an exact division (with ''k''=3 and ''n''=2), as both Alice and George value the three pieces as 20%, 50% and 30% respectively. Several common variants and special cases are known by different terms: * Consensus halving – the cake should be partitioned into two pieces (''k''=2), and all agents agree that the pieces have equal values. *Consensus 1/''k''-division, for any constant ''k''>1 - the cake should be partitione ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Francis Su
Francis Edward Su is an American mathematician. He joined the Harvey Mudd College faculty in 1996, and is currently Benediktsson-Karwa Professor of Mathematics. Su served as president of the Mathematical Association of America from 2015–2017 and is serving as a Vice President of the American Mathematical Society from 2020-2023. Su has received multiple awards from the MAA, including the Henry L. Alder Award and the Haimo Award, both for distinguished teaching. He was also a Phi Beta Kappa Visiting Scholar during the 2019-2020 term. Su received his B.S. in Mathematics from the University of Texas, graduating Phi Beta Kappa in 1989. He went on to receive his Ph.D. from Harvard University, where his advisor was Persi Diaconis. His research area is combinatorics, and he is particularly known for his work on fair division. Su and Michael Starbird are co-authors of the book "Topology Through Inquiry". His book, "Mathematics for Human Flourishing", was released on 7 January 2020. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Social Sciences
''Mathematical Social Sciences'' is a peer-reviewed mathematics journal in the field of social science, in particular economics. The journal covers research on mathematical modelling in fields such as economics, psychology, political science, and other social sciences, including individual decision making and preferences, decisions under risk, collective choice, voting, theories of measurement, and game theory. It was established in 1980 and is published by Elsevier. The editors-in-chief have been Ki Hang Kim (1980-1983), Hervé Moulin (1983-2004), Jean-François Laslier (2005-2016), Simon Grant, Christopher Chambers (2009-2020), Yusufcan Masatlioglu (2020-2021), Juan Moreno-Ternero (2017-) and Emel Filiz-Ozbay (2021-). See also * List of scholarly journals in economics The following is a list of scholarly journals in economics containing most of the prominent academic journals in economics. Popular magazines or other publications related to economics, finance, or busines ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorems In Measure Theory
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fair Division
Fair division is the problem in game theory of dividing a set of resources among several people who have an entitlement to them so that each person receives their due share. That problem arises in various real-world settings such as division of inheritance, partnership dissolutions, divorce settlements, electronic frequency allocation, airport traffic management, and exploitation of Earth observation satellites. It is an active research area in mathematics, economics (especially social choice theory), dispute resolution, etc. The central tenet of fair division is that such a division should be performed by the players themselves, maybe using a mediator but certainly not an arbiter as only the players really know how they value the goods. The archetypal fair division algorithm is divide and choose. It demonstrates that two agents with different tastes can divide a cake such that each of them believes that he got the best piece. The research in fair division can be seen as an exten ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Combinatorics On Words
Combinatorics on words is a fairly new field of mathematics, branching from combinatorics, which focuses on the study of words and formal languages. The subject looks at letters or symbols, and the sequences they form. Combinatorics on words affects various areas of mathematical study, including algebra and computer science. There have been a wide range of contributions to the field. Some of the first work was on square-free words by Axel Thue in the early 1900s. He and colleagues observed patterns within words and tried to explain them. As time went on, combinatorics on words became useful in the study of algorithms and coding. It led to developments in abstract algebra and answering open questions. Definition Combinatorics is an area of discrete mathematics. Discrete mathematics is the study of countable structures. These objects have a definite beginning and end. The study of enumerable objects is the opposite of disciplines such as analysis, where calculus and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]