HOME
*





History Of Numerical Solution Of Differential Equations Using Computers
Differential equations, in particular Euler equations, rose in prominence during World War II in calculating the accurate trajectory of ballistics, both rocket-propelled and gun or cannon type projectiles. Originally, mathematicians used the simpler calculus of earlier centuries to determine velocity, thrust, elevation, curve, distance, and other parameters. New weapons, however, such as Germany's giant cannons, the " Paris Gun" (Encyclopedia Astronautica) and " Big Bertha," and the V-2 rocket, meant that projectiles would travel hundreds of miles in distance and dozens of miles in height, in all weathers. As a result, variables such as diminished wind resistance in thin atmospheres and changes in gravitational pull reduced accuracy using the historic methodology. There was the additional problem of planes that could now fly hundreds of miles an hour. Differential equations were applied to stochastic processes. Developing machines that could speed up human calculation of differenti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler Equations
200px, Leonhard Euler (1707–1783) In mathematics and physics, many topics are named in honor of Swiss mathematician Leonhard Euler (1707–1783), who made many important discoveries and innovations. Many of these items named after Euler include their own unique function, equation, formula, identity, number (single or sequence), or other mathematical entity. Many of these entities have been given simple and ambiguous names such as Euler's function, Euler's equation, and Euler's formula. Euler's work touched upon so many fields that he is often the earliest written reference on a given matter. In an effort to avoid naming everything after Euler, some discoveries and theorems are attributed to the first person to have proved them ''after'' Euler. Conjectures *Euler's conjecture (Waring's problem) *Euler's sum of powers conjecture * Euler's Graeco-Latin square conjecture Equations Usually, ''Euler's equation'' refers to one of (or a set of) differential equations (DEs). It is cus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mallock Machine
The Mallock machine is an electrical analog computer built in 1933 to solve simultaneous linear differential equations In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b( .... It uses coupled transformers, with numbers of turns digitally set up to +/-1000 and solved sets of up to 10 linear differential equations. It was built by Rawlyn Richard Manconchy Mallock of Cambridge University. The Mallock machine was contemporary with the mechanical differential analyser, which was also used at Cambridge during the late 1930s and 1940s. References * * * * * 1930s computers Analog computers Computer-related introductions in 1933 {{Compu-hardware-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Partial Differential Equations
Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Overview of methods Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values. Method of lines The method of lines (MOL, NMOL, NUMOLHamdi, S., W. E. Schiesser and G. W. Griffiths (2007) Method of lines ''Scholarpedia'', 2(7):2859.) is a technique for solving partial differential equations (PDEs) in which all dimensions except one are discretized. MOL allows standard, general-purpose methods and software, developed for the numerical integration of ordinary differential equations (ODEs) and differential algebraic equations (DAEs), to be used. A large number of integration routines have been ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numerical Ordinary Differential Equations
Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation. An alternative method is to use techniques from calculus to obtain a series expansion of the solution. Ordinary differential equations occur in many scientific disciplines, including physics, chemistry, biology, and economics. In addition, some methods in numerical partial differential equations convert the partial differential equation into an ordinary differential equation, which must then be solved. The problem A first-order differentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Von Neumann Architecture
The von Neumann architecture — also known as the von Neumann model or Princeton architecture — is a computer architecture based on a 1945 description by John von Neumann, and by others, in the ''First Draft of a Report on the EDVAC''. The document describes a design architecture for an electronic digital computer with these components: * A processing unit with both an arithmetic logic unit and processor registers * A control unit that includes an instruction register and a program counter * Memory that stores data and instructions * External mass storage * Input and output mechanisms.. The term "von Neumann architecture" has evolved to refer to any stored-program computer in which an instruction fetch and a data operation cannot occur at the same time (since they share a common bus). This is referred to as the von Neumann bottleneck, which often limits the performance of the corresponding system. The design of a von Neumann architecture machine is simpler than in a Harva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cybernetics
Cybernetics is a wide-ranging field concerned with circular causality, such as feedback, in regulatory and purposive systems. Cybernetics is named after an example of circular causal feedback, that of steering a ship, where the helmsperson maintains a steady course in a changing environment by adjusting their steering in continual response to the effect it is observed as having. Cybernetics is concerned with circular causal processes such as steering however they are embodied,Ashby, W. R. (1956). An introduction to cybernetics. London: Chapman & Hall, p. 1. including in ecological, technological, biological, cognitive, and social systems, and in the context of practical activities such as designing, learning, managing, conversation, and the practice of cybernetics itself. Cybernetics' transdisciplinary and "antidisciplinary" character has meant that it intersects with a number of other fields, leading to it having both wide influence and diverse interpretations. Cybernetics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Norbert Wiener
Norbert Wiener (November 26, 1894 – March 18, 1964) was an American mathematician and philosopher. He was a professor of mathematics at the Massachusetts Institute of Technology (MIT). A child prodigy, Wiener later became an early researcher in stochastic and mathematical noise processes, contributing work relevant to electronic engineering, electronic communication, and control systems. Wiener is considered the originator of cybernetics, the science of communication as it relates to living things and machines, with implications for engineering, systems control, computer science, biology, neuroscience, philosophy, and the organization of society. Norbert Wiener is credited as being one of the first to theorize that all intelligent behavior was the result of feedback mechanisms, that could possibly be simulated by machines and was an important early step towards the development of modern artificial intelligence. Biography Youth Wiener was born in Columbia, Missouri, the first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sarah Bergbreiter
Sarah Bergbreiter is a professor of Mechanical Engineering at Carnegie Mellon University Carnegie Mellon University (CMU) is a private research university in Pittsburgh, Pennsylvania. One of its predecessors was established in 1900 by Andrew Carnegie as the Carnegie Technical Schools; it became the Carnegie Institute of Technology ..., previously a professor at the University of Maryland. Her research specifically has focused on microrobotics, with projects influencing the medicine and consumer electronic spheres. She has given TED Talks highlighting her micro robots that can jump over 80 times their height. One such micro robot is the 4 millimeter "flea". She has won multiple awards for her work including the DARPA Young Faculty Award in 2008, the NSF CAREER Award in 2011, and the Presidential Early Career Award for Scientists and Engineers (PECASE) Award in 2013. Bergbreiter received her B.S.E degree in electrical engineering from Princeton University, and her M.S. and Ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Franklin Delano Roosevelt
Franklin Delano Roosevelt (; ; January 30, 1882April 12, 1945), often referred to by his initials FDR, was an American politician and attorney who served as the 32nd president of the United States from 1933 until his death in 1945. As the leader of the Democratic Party, he won a record four presidential elections and became a central figure in world events during the first half of the 20th century. Roosevelt directed the federal government during most of the Great Depression, implementing his New Deal domestic agenda in response to the worst economic crisis in U.S. history. He built the New Deal Coalition, which defined modern liberalism in the United States throughout the middle third of the 20th century. His third and fourth terms were dominated by World War II, which ended in victory shortly after he died in office. Born into the prominent Roosevelt family in Hyde Park, New York, he graduated from both Groton School and Harvard College, and attended Columbia Law Scho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Analog Computer
An analog computer or analogue computer is a type of computer that uses the continuous variation aspect of physical phenomena such as electrical, mechanical, or hydraulic quantities (''analog signals'') to model the problem being solved. In contrast, digital computers represent varying quantities symbolically and by discrete values of both time and amplitude (digital signals). Analog computers can have a very wide range of complexity. Slide rules and nomograms are the simplest, while naval gunfire control computers and large hybrid digital/analog computers were among the most complicated. Complex mechanisms for process control and protective relays used analog computation to perform control and protective functions. Analog computers were widely used in scientific and industrial applications even after the advent of digital computers, because at the time they were typically much faster, but they started to become obsolete as early as the 1950s and 1960s, although they remaine ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Analyser
The differential analyser is a mechanical analogue computer designed to solve differential equations by integration, using wheel-and-disc mechanisms to perform the integration. It was one of the first advanced computing devices to be used operationally. The original machines could not add, but then it was noticed that if the two wheels of a rear differential are turned, the drive shaft will compute the average of the left and right wheels. A simple gear ratio of 1:2 then enables multiplication by two, Multiplication is just a special case of integration, namely integrating a constant function. History Research on solutions for differential equations using mechanical devices, discounting planimeters, started at least as early as 1836, when the French physicist Gaspard-Gustave Coriolis designed a mechanical device to integrate differential equations of the first order. The first description of a device which could integrate differential equations of any order was published in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Calculus
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. It has two major branches, differential calculus and integral calculus; the former concerns instantaneous Rate of change (mathematics), rates of change, and the slopes of curves, while the latter concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus, and they make use of the fundamental notions of convergence (mathematics), convergence of infinite sequences and Series (mathematics), infinite series to a well-defined limit (mathematics), limit. Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz. Later work, including (ε, δ)-definition of limit, codify ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]