Highway Network
In machine learning, the Highway Network was the first working very deep feedforward neural network with hundreds of layers, much deeper than previous artificial neural networks. It uses skip connections modulated by learned gating mechanisms to regulate information flow, inspired by Long Short-Term Memory (LSTM) recurrent neural networks. The advantage of a Highway Network over the common deep neural networks is that it solves or partially prevents the vanishing gradient problem, thus leading to easier to optimize neural networks. The gating mechanisms facilitate information flow across many layers ("information highways"). Highway Networks have been used as part of text sequence labeling and speech recognition tasks. An open-gated or gateless Highway Network variant called Residual neural network was used to win the ImageNet 2015 competition. This has become the most cited neural network of the 21st century. Model The model has two gates in addition to the H(WH, x) gate: the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Machine Learning
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F.,Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning IEEE Transactions on Vehicular Technology, 2020. A subset of machine learning is closely related to computational statistics, which focuses on making predicti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Feedforward Neural Network
A feedforward neural network (FNN) is an artificial neural network wherein connections between the nodes do ''not'' form a cycle. As such, it is different from its descendant: recurrent neural networks. The feedforward neural network was the first and simplest type of artificial neural network devised. In this network, the information moves in only one direction—forward—from the input nodes, through the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the network. Single-layer perceptron The simplest kind of neural network is a ''single-layer perceptron'' network, which consists of a single layer of output nodes; the inputs are fed directly to the outputs via a series of weights. The sum of the products of the weights and the inputs is calculated in each node, and if the value is above some threshold (typically 0) the neuron fires and takes the activated value (typically 1); otherwise it takes the deactivated value (typically -1). Ne ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Artificial Neural Network
Artificial neural networks (ANNs), usually simply called neural networks (NNs) or neural nets, are computing systems inspired by the biological neural networks that constitute animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons. An artificial neuron receives signals then processes them and can signal neurons connected to it. The "signal" at a connection is a real number, and the output of each neuron is computed by some non-linear function of the sum of its inputs. The connections are called ''edges''. Neurons and edges typically have a ''weight'' that adjusts as learning proceeds. The weight increases or decreases the strength of the signal at a connection. Neurons may have a threshold such that a signal is sent only if the aggregate signal crosses that threshold. Typically ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Long Short-term Memory
Long short-term memory (LSTM) is an artificial neural network used in the fields of artificial intelligence and deep learning. Unlike standard feedforward neural networks, LSTM has feedback connections. Such a recurrent neural network (RNN) can process not only single data points (such as images), but also entire sequences of data (such as speech or video). For example, LSTM is applicable to tasks such as unsegmented, connected handwriting recognition, speech recognition, machine translation, robot control, video games, and healthcare. The name of LSTM refers to the analogy that a standard RNN has both "long-term memory" and "short-term memory". The connection weights and biases in the network change once per episode of training, analogous to how physiological changes in synaptic strengths store long-term memories; the activation patterns in the network change once per time-step, analogous to how the moment-to-moment change in electric firing patterns in the brain store short- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recurrent Neural Networks
A recurrent neural network (RNN) is a class of artificial neural networks where connections between nodes can create a cycle, allowing output from some nodes to affect subsequent input to the same nodes. This allows it to exhibit temporal dynamic behavior. Derived from feedforward neural networks, RNNs can use their internal state (memory) to process variable length sequences of inputs. This makes them applicable to tasks such as unsegmented, connected handwriting recognition or speech recognition. Recurrent neural networks are theoretically Turing complete and can run arbitrary programs to process arbitrary sequences of inputs. The term "recurrent neural network" is used to refer to the class of networks with an infinite impulse response, whereas "convolutional neural network" refers to the class of finite impulse response. Both classes of networks exhibit temporal dynamic behavior. A finite impulse recurrent network is a directed acyclic graph that can be unrolled and replace ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neural Computation (journal)
''Neural Computation'' is a monthly peer-reviewed scientific journal covering all aspects of neural computation, including modeling the brain and the design and construction of neurally-inspired information processing systems. It was established in 1989 and is published by MIT Press. The editor-in-chief is Terry Sejnowski, Terrence J. Sejnowski (Salk Institute for Biological Studies). According to the ''Journal Citation Reports'', the journal has a 2014 impact factor of 2.207. References External links * Neuroscience journals MIT Press academic journals Monthly journals English-language journals Publications established in 1989 Cognitive science journals {{neuroscience-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vanishing Gradient Problem
In machine learning, the vanishing gradient problem is encountered when training artificial neural networks with gradient-based learning methods and backpropagation. In such methods, during each iteration of training each of the neural network's weights receives an update proportional to the partial derivative of the error function with respect to the current weight. The problem is that in some cases, the gradient will be vanishingly small, effectively preventing the weight from changing its value. In the worst case, this may completely stop the neural network from further training. As one example of the problem cause, traditional activation functions such as the hyperbolic tangent function have gradients in the range , and backpropagation computes gradients by the chain rule. This has the effect of multiplying of these small numbers to compute gradients of the early layers in an -layer network, meaning that the gradient (error signal) decreases exponentially with while the early ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semantic Analysis (machine Learning)
In machine learning, semantic analysis of a corpus is the task of building structures that approximate concepts from a large set of documents. It generally does not involve prior semantic understanding of the documents. A metalanguage based on predicate logic can analyze the speech of humans. Another strategy to understand the semantics of a text is symbol grounding. If language is grounded, it is equal to recognizing a machine readable meaning. For the restricted domain of spatial analysis, a computer based language understanding system was demonstrated. Latent semantic analysis (sometimes latent semantic indexing), is a class of techniques where documents are represented as vectors in term space. A prominent example is PLSI. Latent Dirichlet allocation involves attributing document terms to topics. n-grams and hidden Markov models work by representing the term stream as a Markov chain where each term is derived from the few terms before it. See also * Explicit semantic ana ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Speech Recognition
Speech recognition is an interdisciplinary subfield of computer science and computational linguistics that develops methodologies and technologies that enable the recognition and translation of spoken language into text by computers with the main benefit of searchability. It is also known as automatic speech recognition (ASR), computer speech recognition or speech to text (STT). It incorporates knowledge and research in the computer science, linguistics and computer engineering fields. The reverse process is speech synthesis. Some speech recognition systems require "training" (also called "enrollment") where an individual speaker reads text or isolated vocabulary into the system. The system analyzes the person's specific voice and uses it to fine-tune the recognition of that person's speech, resulting in increased accuracy. Systems that do not use training are called "speaker-independent" systems. Systems that use training are called "speaker dependent". Speech recognition ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Residual Neural Network
A residual neural network (ResNet) is an artificial neural network (ANN). It is a gateless or open-gated variant of the HighwayNet, the first working very deep feedforward neural network with hundreds of layers, much deeper than previous neural networks. ''Skip connections'' or ''shortcuts'' are used to jump over some layers ( HighwayNets may also learn the skip weights themselves through an additional weight matrix for their gates). Typical ''ResNet'' models are implemented with double- or triple- layer skips that contain nonlinearities (ReLU) and batch normalization in between. Models with several parallel skips are referred to as ''DenseNets''. In the context of residual neural networks, a non-residual network may be described as a ''plain network''. Like in the case of Long Short-Term Memory recurrent neural networks there are two main reasons to add skip connections: to avoid the problem of vanishing gradients, thus leading to easier to optimize neural networks, where the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sigmoid Function
A sigmoid function is a mathematical function having a characteristic "S"-shaped curve or sigmoid curve. A common example of a sigmoid function is the logistic function shown in the first figure and defined by the formula: :S(x) = \frac = \frac=1-S(-x). Other standard sigmoid functions are given in the Examples section. In some fields, most notably in the context of artificial neural networks, the term "sigmoid function" is used as an alias for the logistic function. Special cases of the sigmoid function include the Gompertz curve (used in modeling systems that saturate at large values of x) and the ogee curve (used in the spillway of some dams). Sigmoid functions have domain of all real numbers, with return (response) value commonly monotonically increasing but could be decreasing. Sigmoid functions most often show a return value (y axis) in the range 0 to 1. Another commonly used range is from −1 to 1. A wide variety of sigmoid functions including the logistic and hype ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |