Hierarchical Hidden Markov Model
The hierarchical hidden Markov model (HHMM) is a statistical model derived from the hidden Markov model (HMM). In an HHMM, each state is considered to be a self-contained probabilistic model. More precisely, each state of the HHMM is itself an HHMM. HHMMs and HMMs are useful in many fields, including pattern recognition Pattern recognition is the automated recognition of patterns and regularities in data. It has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphics .... Background It is sometimes useful to use HMMs in specific structures in order to facilitate learning and generalization. For example, even though a fully connected HMM could always be used if enough training data is available, it is often useful to constrain the model by not allowing arbitrary state transitions. In the same way it can be beneficial to embed the HMM into a greater structure; which, theoretically, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistical Model
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables. As such, a statistical model is "a formal representation of a theory" ( Herman Adèr quoting Kenneth Bollen). All statistical hypothesis tests and all statistical estimators are derived via statistical models. More generally, statistical models are part of the foundation of statistical inference. Introduction Informally, a statistical model can be thought of as a statistical assumption (or set of statistical assumptions) with a certain property: that the assumption allows us to calculate the probability of any event. As an example, consider a pair of ordinary six ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hidden Markov Model
A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process — call it X — with unobservable ("''hidden''") states. As part of the definition, HMM requires that there be an observable process Y whose outcomes are "influenced" by the outcomes of X in a known way. Since X cannot be observed directly, the goal is to learn about X by observing Y. HMM has an additional requirement that the outcome of Y at time t=t_0 must be "influenced" exclusively by the outcome of X at t=t_0 and that the outcomes of X and Y at t handwriting recognition, handwriting, gesture recognition, part-of-speech tagging, musical score following, partial discharges and bioinformatics. Definition Let X_n and Y_n be discrete-time stochastic processes and n\geq 1. The pair (X_n,Y_n) is a ''hidden Markov model'' if * X_n is a Markov process whose behavior is not directly observable ("hidden"); * \operatorname\bigl(Y_n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probabilistic Model
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables. As such, a statistical model is "a formal representation of a theory" ( Herman Adèr quoting Kenneth Bollen). All statistical hypothesis tests and all statistical estimators are derived via statistical models. More generally, statistical models are part of the foundation of statistical inference. Introduction Informally, a statistical model can be thought of as a statistical assumption (or set of statistical assumptions) with a certain property: that the assumption allows us to calculate the probability of any event. As an example, consider a pair of ordinary six-si ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pattern Recognition
Pattern recognition is the automated recognition of patterns and regularities in data. It has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Pattern recognition has its origins in statistics and engineering; some modern approaches to pattern recognition include the use of machine learning, due to the increased availability of big data and a new abundance of processing power. These activities can be viewed as two facets of the same field of application, and they have undergone substantial development over the past few decades. Pattern recognition systems are commonly trained from labeled "training" data. When no labeled data are available, other algorithms can be used to discover previously unknown patterns. KDD and data mining have a larger focus on unsupervised methods and stronger connection to business use. Pattern recognition focuses more on the si ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
HHMM
The hierarchical hidden Markov model (HHMM) is a statistical model derived from the hidden Markov model (HMM). In an HHMM, each state is considered to be a self-contained probabilistic model. More precisely, each state of the HHMM is itself an HHMM. HHMMs and HMMs are useful in many fields, including pattern recognition. Background It is sometimes useful to use HMMs in specific structures in order to facilitate learning and generalization. For example, even though a fully connected HMM could always be used if enough training data is available, it is often useful to constrain the model by not allowing arbitrary state transitions. In the same way it can be beneficial to embed the HMM into a greater structure; which, theoretically, may not be able to solve any other problems than the basic HMM but can solve some problems more efficiently when it comes to the amount of training data required. Description In the hierarchical hidden Markov model (HHMM), each state is considered t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Layered Hidden Markov Model
The layered hidden Markov model (LHMM) is a statistical model derived from the hidden Markov model (HMM). A layered hidden Markov model (LHMM) consists of ''N'' levels of HMMs, where the HMMs on level ''i'' + 1 correspond to observation symbols or probability generators at level ''i''. Every level ''i'' of the LHMM consists of ''K''''i'' HMMs running in parallel. Background LHMMs are sometimes useful in specific structures because they can facilitate learning and generalization. For example, even though a fully connected HMM could always be used if enough training data were available, it is often useful to constrain the model by not allowing arbitrary state transitions. In the same way it can be beneficial to embed the HMM in a layered structure which, theoretically, may not be able to solve any problems the basic HMM cannot, but can solve some problems more efficiently because less training data is needed. The layered hidden Markov model A layered hidden Markov mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hierarchical Temporal Memory
Hierarchical temporal memory (HTM) is a biologically constrained machine intelligence technology developed by Numenta. Originally described in the 2004 book ''On Intelligence'' by Jeff Hawkins with Sandra Blakeslee, HTM is primarily used today for anomaly detection in streaming data. The technology is based on neuroscience and the physiology and interaction of pyramidal neurons in the neocortex of the mammalian (in particular, human) brain. At the core of HTM are learning algorithms that can store, learn, infer, and recall high-order sequences. Unlike most other machine learning methods, HTM constantly learns (in an unsupervised process) time-based patterns in unlabeled data. HTM is robust to noise, and has high capacity (it can learn multiple patterns simultaneously). When applied to computers, HTM is well suited for prediction, anomaly detection, classification, and ultimately sensorimotor applications. HTM has been tested and implemented in software through example applicatio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |