HOME
*





Hessian Affine
The Hessian affine region detector is a feature detector used in the fields of computer vision and image analysis. Like other feature detectors, the Hessian affine detector is typically used as a preprocessing step to algorithms that rely on identifiable, characteristic interest points. The Hessian affine detector is part of the subclass of feature detectors known as ''affine-invariant'' detectors: Harris affine region detector, Hessian affine regions, maximally stable extremal regions, Kadir–Brady saliency detector, edge-based regions (EBR) and intensity-extrema-based (IBR) regions. Algorithm description The Hessian affine detector algorithm is almost identical to the Harris affine region detector. In fact, both algorithms were derived bKrystian MikolajczykanCordelia Schmidin 2002, based on earlier work in, see also for a more general overview. How does the Hessian affine differ? The Harris affine detector relies on interest points detected at multiple scales using ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feature Detection (computer Vision)
In computer vision and image processing, a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions. More broadly a ''feature'' is any piece of information which is relevant for solving the computational task related to a certain application. This is the same sense as feature in machine learning and pattern recognition generally, though image processing has a very sophisticated collection of features. The feature concept is very general and the choice of features in a particular computer vision system may be highly dependent on the specific problem at h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix is denoted , , or . The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e & f \\ g & h & i \end= aei + bfg + cdh - ceg - bdi - afh. The determinant of a matrix can be defined in several equivalent ways. Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of different entries, and the number of these summands is n!, the factorial of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Shape Adaptation
Affine shape adaptation is a methodology for iteratively adapting the shape of the smoothing kernels in an affine group of smoothing kernels to the local image structure in neighbourhood region of a specific image point. Equivalently, affine shape adaptation can be accomplished by iteratively warping a local image patch with affine transformations while applying a rotationally symmetric filter to the warped image patches. Provided that this iterative process converges, the resulting fixed point will be ''affine invariant''. In the area of computer vision, this idea has been used for defining affine invariant interest point operators as well as affine invariant texture analysis methods. Affine-adapted interest point operators The interest points obtained from the scale-adapted Laplacian blob detector or the multi-scale Harris corner detector with automatic scale selection are invariant to translations, rotations and uniform rescalings in the spatial domain. The images that con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kadir Brady Saliency Detector
Kadir is the primary transliteration of two Arabic male given names ( ar, قادر, also spelled Ghader, Kader, Qader, Qadir or Quadir) and ( ar, قدیر, also spelled Ghadir, Kadeer, Qadeer or Qadir). It's also one of the names of God in Islam, meaning "''Almighty''". Kadeer * Kadeer Ali (born 1983), English cricketer Kader * Kader Abdolah (born 1954), Iranian-Dutch writer, poet and columnist * Kader Arif (born 1959), French politician * Kader Asmal (1934–2011), South African politician * Kader Hançar (corn 1999), Turkish women's footballer * Kader Khan (born 1937), Indian film actor * Abdel Kader Sylla (born 1990), Seychelles basketball player Kadir * Elishay Kadir (born 1987), Israeli basketball player * Syed Abdul Kadir (born 1948), Singaporean boxer * Kadir Arslan (born 1977), Turkish volleyball player * Kadir Cin (born 1987), Turkish volleyball player * Kadir İnanır (born 1949), Turkish film actor and director * Kadir Keleş (born 1988), Turkish footballer * Kadir ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximally Stable Extremal Regions
In computer vision, maximally stable extremal regions (MSER) are used as a method of blob detection in images. This technique was proposed by Matas et al.J. Matas, O. Chum, M. Urban, and T. Pajdla"Robust wide baseline stereo from maximally stable extremal regions."Proc. of British Machine Vision Conference, pages 384-396, 2002. to find correspondences between image elements from two images with different viewpoints. This method of extracting a comprehensive number of corresponding image elements contributes to the wide-baseline matching, and it has led to better stereo matching and object recognition algorithms. Terms and definitions Image I is a mapping I : D \subset \mathbb^2 \to S. Extremal regions are well defined on images if: # S is totally ordered (total, antisymmetric and transitive binary relations \le exist). # An adjacency relation A \subset D \times D is defined. We will denote that two points are adjacent as pAq. Region Q is a contiguous (aka connected) subset o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Blob Detection
In computer vision, blob detection methods are aimed at detecting regions in a digital image that differ in properties, such as brightness or color, compared to surrounding regions. Informally, a blob is a region of an image in which some properties are constant or approximately constant; all the points in a blob can be considered in some sense to be similar to each other. The most common method for blob detection is convolution. Given some property of interest expressed as a function of position on the image, there are two main classes of blob detectors: (i) '' differential methods'', which are based on derivatives of the function with respect to position, and (ii) ''methods based on local extrema'', which are based on finding the local maxima and minima of the function. With the more recent terminology used in the field, these detectors can also be referred to as ''interest point operators'', or alternatively interest region operators (see also interest point detec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Laplacian Of Gaussian
In computer vision, blob detection methods are aimed at detecting regions in a digital image that differ in properties, such as brightness or color, compared to surrounding regions. Informally, a blob is a region of an image in which some properties are constant or approximately constant; all the points in a blob can be considered in some sense to be similar to each other. The most common method for blob detection is convolution. Given some property of interest expressed as a function of position on the image, there are two main classes of blob detectors: (i) '' differential methods'', which are based on derivatives of the function with respect to position, and (ii) ''methods based on local extrema'', which are based on finding the local maxima and minima of the function. With the more recent terminology used in the field, these detectors can also be referred to as ''interest point operators'', or alternatively interest region operators (see also interest point detecti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trace Of A Matrix
In linear algebra, the trace of a square matrix , denoted , is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of . The trace is only defined for a square matrix (). It can be proved that the trace of a matrix is the sum of its (complex) eigenvalues (counted with multiplicities). It can also be proved that for any two matrices and . This implies that similar matrices have the same trace. As a consequence one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the th row and th column of . The entries of can be real numbers or (more generally) complex numbers. The trace is not ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hessian Matrix
In mathematics, the Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the local curvature of a function of many variables. The Hessian matrix was developed in the 19th century by the German mathematician Ludwig Otto Hesse and later named after him. Hesse originally used the term "functional determinants". Definitions and properties Suppose f : \R^n \to \R is a function taking as input a vector \mathbf \in \R^n and outputting a scalar f(\mathbf) \in \R. If all second-order partial derivatives of f exist, then the Hessian matrix \mathbf of f is a square n \times n matrix, usually defined and arranged as follows: \mathbf H_f= \begin \dfrac & \dfrac & \cdots & \dfrac \\ .2ex \dfrac & \dfrac & \cdots & \dfrac \\ .2ex \vdots & \vdots & \ddots & \vdots \\ .2ex \dfrac & \dfrac & \cdots & \dfrac \end, or, by stating an equation for the coefficients using indices i and j, (\mathbf H_f)_ = \f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Vision
Computer vision is an interdisciplinary scientific field that deals with how computers can gain high-level understanding from digital images or videos. From the perspective of engineering, it seeks to understand and automate tasks that the human visual system can do. Computer vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the forms of decisions. Understanding in this context means the transformation of visual images (the input of the retina) into descriptions of the world that make sense to thought processes and can elicit appropriate action. This image understanding can be seen as the disentangling of symbolic information from image data using models constructed with the aid of geometry, physics, statistics, and learning theory. The scientific discipline of computer vision is concerned with the theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Corner Detection
Corner detection is an approach used within computer vision systems to extract certain kinds of features and infer the contents of an image. Corner detection is frequently used in motion detection, image registration, video tracking, image mosaicing, panorama stitching, 3D reconstruction and object recognition. Corner detection overlaps with the topic of interest point detection. Formalization A corner can be defined as the intersection of two edges. A corner can also be defined as a point for which there are two dominant and different edge directions in a local neighbourhood of the point. An interest point is a point in an image which has a well-defined position and can be robustly detected. This means that an interest point can be a corner but it can also be, for example, an isolated point of local intensity maximum or minimum, line endings, or a point on a curve where the curvature is locally maximal. In practice, most so-called corner detection methods detect intere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kadir–Brady Saliency Detector
The Kadir–Brady saliency detector extracts features of objects in images that are distinct and representative. It was invented by Timor Kadir and J. Michael Brady in 2001 and an affine invariant version was introduced by Kadir and Brady in 2004 and a robust version was designed by Shao et al. in 2007. The detector uses the algorithms to more efficiently remove background noise and so more easily identify features which can be used in a 3D model. As the detector scans images it uses the three basics of global transformation, local perturbations and intra-class variations to define the areas of search, and identifies unique regions of those images rather than using the more traditional corner or blob searches. It attempts to be invariant to affine transformations and illumination changes. This leads to a more object oriented search than previous methods and outperforms other detectors due to non blurring of the images, an ability to ignore slowly changing regions and a broader ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]