Hermite Class
The Hermite or Pólya class is a set of entire functions satisfying the requirement that if ''E(z)'' is in the class, then:, E(x-iy), for positive ''y''. (However, a de Branges space can be defined using a function that is not in the class, such as .) The Hermite class is a subset of the '' Hermite–Biehler class'', which does not include the third of the above three requirements. A function with no roots in the upper half plane is of Hermite class if and only if two conditions are met: that the nonzero roots ''zn'' satisfy :\sum_n\frac<\infty (with roots counted according to their ), and that the function can be expressed in the form of a [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charles Hermite
Charles Hermite () FRS FRSE MIAS (24 December 1822 – 14 January 1901) was a French mathematician who did research concerning number theory, quadratic forms, invariant theory, orthogonal polynomials, elliptic functions, and algebra. Hermite polynomials, Hermite interpolation, Hermite normal form, Hermitian operators, and cubic Hermite splines are named in his honor. One of his students was Henri Poincaré. He was the first to prove that '' e'', the base of natural logarithms, is a transcendental number. His methods were used later by Ferdinand von Lindemann to prove that π is transcendental. Life Hermite was born in Dieuze, Moselle, on 24 December 1822, with a deformity in his right foot that would impair his gait throughout his life. He was the sixth of seven children of Ferdinand Hermite and his wife, Madeleine née Lallemand. Ferdinand worked in the drapery business of Madeleine's family while also pursuing a career as an artist. The drapery business relocate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canadian Journal Of Mathematics
The ''Canadian Journal of Mathematics'' (french: Journal canadien de mathématiques) is a bimonthly mathematics journal published by the Canadian Mathematical Society. It was established in 1949 by H. S. M. Coxeter and G. de B. Robinson. The current editors-in-chief of the journal are Louigi Addario-Berry and Eyal Goren. The journal publishes articles in all areas of mathematics. See also * Canadian Mathematical Bulletin The ''Canadian Mathematical Bulletin'' (french: Bulletin Canadien de Mathématiques) is a mathematics journal, established in 1958 and published quarterly by the Canadian Mathematical Society. The current editors-in-chief of the journal are Antoni ... References External links * University of Toronto Press academic journals Mathematics journals Publications established in 1949 Bimonthly journals Multilingual journals Cambridge University Press academic journals Academic journals associated with learned and professional societies of Canada ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nevanlinna Function
In mathematics, in the field of complex analysis, a Nevanlinna function is a complex function which is an analytic function on the open upper half-plane \, \mathcal \, and has non-negative imaginary part. A Nevanlinna function maps the upper half-plane to itself or to a real constant, but is not necessarily injective or surjective. Functions with this property are sometimes also known as Herglotz, Pick or R functions. Integral representation Every Nevanlinna function admits a representation : N(z) = C + D z + \int_ \bigg(\frac - \frac \bigg) \operatorname \mu(\lambda), \quad z \in \mathcal, where is a real constant, is a non-negative constant, \mathcal is the upper half-plane, and is a Borel measure on satisfying the growth condition : \int_ \frac < \infty. Conversely, every function of this form turns out to be a Nevanlinna function. The constants in this representation are related to the function via : |
|
Analytic Function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about ''x''0 converges to the function in some neighborhood for every ''x''0 in its domain. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write : f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \cdots in which the coefficients a_0, a_1, \dots are real numbers and the series is convergent to f(x) for x in a neighborhood of x_0. Alternatively, a real analytic function is an infinitely differentiable function such that the Taylor series at any point x_0 in its domain ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hadamard Product (entire Functions)
In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function. A transcendental entire function is an entire function that is not a polynomial. Properties Every entire function can be represented as a power series f(z) = \sum_^\infty a_n z^n that converges everywhere in the complex plane, hence u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiplicity (mathematics)
In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root. The notion of multiplicity is important to be able to count correctly without specifying exceptions (for example, ''double roots'' counted twice). Hence the expression, "counted with multiplicity". If multiplicity is ignored, this may be emphasized by counting the number of ''distinct'' elements, as in "the number of distinct roots". However, whenever a set (as opposed to multiset) is formed, multiplicity is automatically ignored, without requiring use of the term "distinct". Multiplicity of a prime factor In prime factorization, the multiplicity of a prime factor is its p-adic valuation. For example, the prime factorization of the integer is : the multiplicity of the prime factor is , while the multiplicity of each of the prime factors and is . ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
De Branges Space
In mathematics, a de Branges space (sometimes written De Branges space) is a concept in functional analysis and is constructed from a de Branges function. The concept is named after Louis de Branges who proved numerous results regarding these spaces, especially as Hilbert spaces, and used those results to prove the Bieberbach conjecture. De Branges functions A Hermite-Biehler function, also known as de Branges function is an entire function ''E'' from \Complex to \Complex that satisfies the inequality , E(z), > , E(\bar z), , for all ''z'' in the upper half of the complex plane \Complex^+ = \. Definition 1 Given a Hermite-Biehler function , the de Branges space is defined as the set of all entire functions ''F'' such that F/E,F^/E \in H_2(\Complex^+) where: * \Complex^+ = \ is the open upper half of the complex plane. * F^(z) = \overline. * H_2(\Complex^+) is the usual Hardy space In complex analysis, the Hardy spaces (or Hardy classes) ''Hp'' are certain spaces of holomor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Georg Pólya
{{disambiguation ...
Georg may refer to: * ''Georg'' (film), 1997 *Georg (musical), Estonian musical * Georg (given name) * Georg (surname) * , a Kriegsmarine coastal tanker See also * George (other) George may refer to: People * George (given name) * George (surname) * George (singer), American-Canadian singer George Nozuka, known by the mononym George * George Washington, First President of the United States * George W. Bush, 43rd President ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Entire Function
In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function. A transcendental entire function is an entire function that is not a polynomial. Properties Every entire function can be represented as a power series f(z) = \sum_^\infty a_n z^n that converges everywhere in the complex plane, hen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monoid
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing. In theoretical computer science, the study of monoids is fundamental for automata ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |