HOME
*



picture info

Helmut Hönl
Helmut Hönl (February 10, 1903 in Mannheim, Germany – March 29, 1981 in Freiburg im Breisgau) was a German theoretical physicist who made contributions to quantum mechanics and the understanding of atomic and molecular structure. Biography From 1921 to circa 1923, Hönl studied at the University of Heidelberg and the University of Göttingen, followed by the University of Munich, where he studied under Arnold Sommerfeld. He was granted his doctor of philosophy in 1926. In 1929, he became assistant to Paul Peter Ewald at the Stuttgart Technische Hochschule until 1933, after which he was a Privatdozent. 1940 he became extraordinary professor at the University of Erlangen and 1943 ordinary professor for theoretical physics at the University of Freiburg, where he emerited 1971. Even before acquiring his doctorate at Munich, Hönl had done seminal work which contributed to the advancement of quantum mechanics and the understanding of atomic and molecular structure and spectra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leiden Kamerlingh-Onnes Lab (cropped)
Leiden (; in English language, English and Archaism, archaic Dutch language, Dutch also Leyden) is a List of cities in the Netherlands by province, city and List of municipalities of the Netherlands, municipality in the Provinces of the Netherlands, province of South Holland, Netherlands. The municipality of Leiden has a population of 119,713, but the city forms one densely connected agglomeration with its suburbs Oegstgeest, Leiderdorp, Voorschoten and Zoeterwoude with 206,647 inhabitants. The Statistics Netherlands, Netherlands Central Bureau of Statistics (CBS) further includes Katwijk in the agglomeration which makes the total population of the Leiden urban agglomeration 270,879, and in the larger Leiden urban area also Teylingen, Noordwijk, and Noordwijkerhout are included with in total 348,868 inhabitants. Leiden is located on the Oude Rijn (Utrecht and South Holland), Oude Rijn, at a distance of some from The Hague to its south and some from Amsterdam to its north. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zeeman Effect
The Zeeman effect (; ) is the effect of splitting of a spectral line into several components in the presence of a static magnetic field. It is named after the Dutch physicist Pieter Zeeman, who discovered it in 1896 and received a Nobel prize for this discovery. It is analogous to the Stark effect, the splitting of a spectral line into several components in the presence of an electric field. Also similar to the Stark effect, transitions between different components have, in general, different intensities, with some being entirely forbidden (in the dipole approximation), as governed by the selection rules. Since the distance between the Zeeman sub-levels is a function of magnetic field strength, this effect can be used to measure magnetic field strength, e.g. that of the Sun and other stars or in laboratory plasmas. The Zeeman effect is very important in applications such as nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, magnetic resonance imagin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Helmut Rechenberg
Helmut Rechenberg (born November 6, 1937, in Berlin; died November 10, 2016, in Munich) was a German physicist and science historian. Rechenberg studied mathematics, physics and astronomy at the University of Munich and graduated in 1964. At Munich, his work was in experimental physics, studying the magnetism of solids. He moved to the Max Planck Institute for Physics in Munich, where he became Werner Heisenberg's doctoral student. In 1968, he graduated with a doctorate on quantum field theory. From 1970 to 1972 he worked at the University of Texas at Austin, collaborating with George Sudarshan on quantum field theory and with Jagdish Mehra on science history. He then returned to Germany and the Max Planck Institute, from which he officially retired in 2002. His six-volume work with Jagdish Mehra on the history of quantum mechanics has been described as "an extraordinary amount of painstaking scholarship". Rechenberg also co-edited Werner Heisenberg's collected works and from 19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jagdish Mehra
Jagdish Mehra (April 8, 1931 – September 14, 2008) was an Indian-American historian of science. Academic career Mehra was educated at Allahabad University, the Max Planck Institut für Physik and the University of California at Los Angeles and obtained a Ph.D. in theoretical physics at the University of Neuchatel. He subsequently taught at Purdue University, Southeastern Massachusetts University, the University of Geneva, the Solvay Institute in Brussels, Rice University, the University of Houston and the International Center for Theoretical Physics. He is particularly well known for a book in 6 volumes on The Historical Development of Quantum Theory,Mehra, J. and Rechenberg, H. The Historical Development of Quantum Theory, Volumes 1-6. New York: Springer-Verlag which he wrote with Helmut Rechenberg. He also wrote a biography of Richard Feynman. He also wrote a book on the controversy surrounding the exact role David Hilbert played in the development of the gravitation th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rudolf Brill
Rudolf Brill (September 7, 1899 in Eschwege – February 17, 1989 in Lenggries) was a German chemist. Education and career Rudolf Friedrich Heinrich Erhard Ernst Brill was born in Eschwege in 1899 as the son of a businessman. From 1918 to 1922, he studied chemistry at the Technical University of Berlin. On May 13, 1922, he earned the diploma in engineering here. On October 15, 1923, he was promoted to PhD with the dissertation title ''Röntgenographische Untersuchungen. Ein Beitrag zur chemischen Konstitution des Seidenfibroins''. His supervisor was Reginald Oliver Herzog at the Kaiser Wilhelm Institute. After completing his doctorate, he moved to a research laboratory at IG Farben in Ludwigshafen-Oppau, where he worked from 1923 till 1941. During this time, Brill published the first work on electron densities in crystals and established the experimental method for the determination of electron densities. In 1941, Brill became the successor to Eduard Zintl, who had died in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solid-state Physics
Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale properties. Thus, solid-state physics forms a theoretical basis of materials science. It also has direct applications, for example in the technology of transistors and semiconductors. Background Solid materials are formed from densely packed atoms, which interact intensely. These interactions produce the mechanical (e.g. hardness and Elasticity (physics), elasticity), Heat conduction, thermal, Electrical conduction, electrical, Magnetism, magnetic and Crystal optics, optical properties of solids. Depending on the material involved and the conditions in which it was formed, the atoms may be arranged in a regular, geometric pattern (crystal, crystalline solids, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Niels Bohr
Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922. Bohr was also a philosopher and a promoter of scientific research. Bohr developed the Bohr model of the atom, in which he proposed that energy levels of electrons are discrete and that the electrons revolve in stable orbits around the atomic nucleus but can jump from one energy level (or orbit) to another. Although the Bohr model has been supplanted by other models, its underlying principles remain valid. He conceived the principle of complementarity: that items could be separately analysed in terms of contradictory properties, like behaving as a wave or a stream of particles. The notion of complementarity dominated Bohr's thinking in both science and philosophy. Bohr founded the Institute of Theoretical Physics at the University of Cope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bohr Model
In atomic physics, the Bohr model or Rutherford–Bohr model, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by orbiting electrons—similar to the structure of the Solar System, but with attraction provided by electrostatic forces in place of gravity. It came after the solar system Joseph Larmor model (1897), the solar system Jean Perrin model (1901), the cubical model (1902), the Hantaro Nagaoka Saturnian model (1904), the plum pudding model (1904), the quantum Arthur Haas model (1910), the Rutherford model (1911), and the nuclear quantum John William Nicholson model (1912). The improvement over the 1911 Rutherford model mainly concerned the new quantum physical interpretation introduced by Haas and Nicholson, but forsaking any attempt to align with classical physics radiation. The model's key success lay in explaining the Rydberg formula for the spectral emission lines of atomic hydrogen. While the Rydberg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectroscopy
Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter waves and acoustic waves can also be considered forms of radiative energy, and recently gravitational waves have been associated with a spectral signature in the context of the Laser Interferometer Gravitational-Wave Observatory (LIGO) In simpler terms, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Historically, spectroscopy originated as the study of the wavelength dependence of the absorption by gas phase matter of visible light dispersed by a prism. Spectroscopy, primarily in the electromagnetic spectrum, is a fundamental exploratory tool in the fields of astronomy, chemistry, materials science, and physics, allowing the composition, physical structure and e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Max Born
Max Born (; 11 December 1882 – 5 January 1970) was a German physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a number of notable physicists in the 1920s and 1930s. Born won the 1954 Nobel Prize in Physics for his "fundamental research in quantum mechanics, especially in the statistical interpretation of the wave function". Born entered the University of Göttingen in 1904, where he met the three renowned mathematicians Felix Klein, David Hilbert, and Hermann Minkowski. He wrote his PhD thesis on the subject of "Stability of Elastica in a Plane and Space", winning the university's Philosophy Faculty Prize. In 1905, he began researching special relativity with Minkowski, and subsequently wrote his habilitation thesis on the Thomson model of the atom. A chance meeting with Fritz Haber in Berlin in 1918 led to discussion of how an ionic compound is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Werner Heisenberg
Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a breakthrough paper. In the subsequent series of papers with Max Born and Pascual Jordan, during the same year, his matrix formulation of quantum mechanics was substantially elaborated. He is known for the uncertainty principle, which he published in 1927. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics". Heisenberg also made contributions to the theories of the hydrodynamics of turbulent flows, the atomic nucleus, ferromagnetism, cosmic rays, and subatomic particles. He was a principal scientist in the German nuclear weapons program during World War II. He was also instrumental in planning the first West German nuclear reactor at Karlsruhe, together with a research reactor in Munich, in 1957. Following World War II, he was appointed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Mechanics
Matrix mechanics is a formulation of quantum mechanics created by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. It was the first conceptually autonomous and logically consistent formulation of quantum mechanics. Its account of quantum jumps supplanted the Bohr model's electron orbits. It did so by interpreting the physical properties of particles as matrices that evolve in time. It is equivalent to the Schrödinger wave formulation of quantum mechanics, as manifest in Dirac's bra–ket notation. In some contrast to the wave formulation, it produces spectra of (mostly energy) operators by purely algebraic, ladder operator methods. Relying on these methods, Wolfgang Pauli derived the hydrogen atom spectrum in 1926, before the development of wave mechanics. Development of matrix mechanics In 1925, Werner Heisenberg, Max Born, and Pascual Jordan formulated the matrix mechanics representation of quantum mechanics. Epiphany at Helgoland In 1925 Werner Heisenberg was w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]