HOME
*





Held Group
In the area of modern algebra known as group theory, the Held group ''He'' is a sporadic simple group of Order (group theory), order :   21033527317 = 4030387200 : ≈ 4. History ''He'' is one of the 26 sporadic groups and was found by during an investigation of simple groups containing an involution whose centralizer is isomorphic to that of an involution in the Mathieu group M24, Mathieu group M24. A second such group is the projective linear group, linear group L5(2). The Held group is the third possibility, and its construction was completed by John McKay (mathematician), John McKay and Graham Higman. The outer automorphism group has order 2 and the Schur multiplier is trivial. Representations The smallest faithful complex representation has dimension 51; there are two such representations that are duals of each other. It centralizer, centralizes an element of order 7 in the Monster group. As a result the prime 7 plays a special role in the theory of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sporadic Simple Group
In mathematics, a sporadic group is one of the 26 exceptional groups found in the classification of finite simple groups. A simple group is a group ''G'' that does not have any normal subgroups except for the trivial group and ''G'' itself. The classification theorem states that the list of finite simple groups consists of 18 countably infinite plus 26 exceptions that do not follow such a systematic pattern. These 26 exceptions are the sporadic groups. They are also known as the sporadic simple groups, or the sporadic finite groups. Because it is not strictly a group of Lie type, the Tits group is sometimes regarded as a sporadic group, in which case there would be 27 sporadic groups. The monster group is the largest of the sporadic groups, and all but six of the other sporadic groups are subquotients of it. Names Five of the sporadic groups were discovered by Mathieu in the 1860s and the other 21 were found between 1965 and 1975. Several of these groups were predicted to exis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order (group Theory)
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is ''infinite''. The ''order'' of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element of a group, is thus the smallest positive integer such that , where denotes the identity element of the group, and denotes the product of copies of . If no such exists, the order of is infinite. The order of a group is denoted by or , and the order of an element is denoted by or , instead of \operatorname(\langle a\rangle), where the brackets denote the generated group. Lagrange's theorem states that for any subgroup of a finite group , the order of the subgroup divides the order of the group; that is, is a divisor of . In particular, the order of any element is a divisor of . Example The symmetric group S3 has th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathieu Group M24
In the area of modern algebra known as group theory, the Mathieu group ''M24'' is a sporadic simple group of order :   21033571123 = 244823040 : ≈ 2. History and properties ''M24'' is one of the 26 sporadic groups and was introduced by . It is a 5-transitive permutation group on 24 objects. The Schur multiplier and the outer automorphism group are both trivial. The Mathieu groups can be constructed in various ways. Initially, Mathieu and others constructed them as permutation groups. It was difficult to see that M24 actually existed, that its generators did not just generate the alternating group A24. The matter was clarified when Ernst Witt constructed M24 as the automorphism (symmetry) group of an S(5,8,24) Steiner system W24 (the Witt design). M24 is the group of permutations that map every block in this design to some other block. The subgroups M23 and M22 then are easily defined to be the stabilizers of a single point and a pair of points respe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Linear Group
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associated projective space P(''V''). Explicitly, the projective linear group is the quotient group :PGL(''V'') = GL(''V'')/Z(''V'') where GL(''V'') is the general linear group of ''V'' and Z(''V'') is the subgroup of all nonzero scalar transformations of ''V''; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group. The projective special linear group, PSL, is defined analogously, as the induced action of the special linear group on the associated projective space. Explicitly: :PSL(''V'') = SL(''V'')/SZ(''V'') where SL(''V'') is the special linear group over ''V'' and SZ(''V'') is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John McKay (mathematician)
John K. S. McKay (18 November 1939 – 19 April 2022) was a British-Canadian mathematician and academic who worked at Concordia University, known for his discovery of monstrous moonshine, his joint construction of some sporadic simple groups, for the McKay conjecture in representation theory, and for the McKay correspondence relating certain finite groups to Lie groups. Biography McKay was educated at Dulwich College, earned his Bachelor and Diploma in 1961 and 1962 at the University of Manchester, and his PhD in 1971 from the University of Edinburgh. Since 1974 he worked at Concordia University, since 1979 as a professor in Computer Science. He was elected a fellow of the Royal Society of Canada in 2000, and won the 2003 CRM-Fields-PIMS prize. In April 2007 a Joint Conference was organised by the Université de Montréal and Concordia University honouring four decades of the work of John McKay. See also *ADE classification *Centre de Recherches Mathématiques The Centre de re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graham Higman
Graham Higman FRS (19 January 1917 – 8 April 2008) was a prominent English mathematician known for his contributions to group theory. Biography Higman was born in Louth, Lincolnshire, and attended Sutton High School, Plymouth, winning a scholarship to Balliol College, Oxford. In 1939 he co-founded The Invariant Society, the student mathematics society, and earned his DPhil from the University of Oxford in 1941. His thesis, ''The units of group-rings'', was written under the direction of J. H. C. Whitehead. From 1960 to 1984 he was the Waynflete Professor of Pure Mathematics at Magdalen College, Oxford. Higman was awarded the Senior Berwick Prize in 1962 and the De Morgan Medal of the London Mathematical Society in 1974. He was the founder of the Journal of Algebra and its editor from 1964 to 1984. Higman had 51 D.Phil. students, including Jonathan Lazare Alperin, Rosemary A. Bailey, Marston Conder, John Mackintosh Howie, and Peter M. Neumann. He was also a local ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Outer Automorphism Group
In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has a trivial center, then is said to be complete. An automorphism of a group which is not inner is called an outer automorphism. The cosets of with respect to outer automorphisms are then the elements of ; this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups. If the inner automorphism group is trivial (when a group is abelian), the automorphism group and outer automorphism group are naturally identified; that is, the outer automorphism group does act on the group. For example, for the alternating group, , the outer automorphism group is usually the group of order 2, with exceptions noted below. Considering as a subgroup of the symmetric group, , conjugation by any odd permutation is an oute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Schur Multiplier
In mathematical group theory, the Schur multiplier or Schur multiplicator is the second homology group H_2(G, \Z) of a group ''G''. It was introduced by in his work on projective representations. Examples and properties The Schur multiplier \operatorname(G) of a finite group ''G'' is a finite abelian group whose exponent divides the order of ''G''. If a Sylow ''p''-subgroup of ''G'' is cyclic for some ''p'', then the order of \operatorname(G) is not divisible by ''p''. In particular, if all Sylow ''p''-subgroups of ''G'' are cyclic, then \operatorname(G) is trivial. For instance, the Schur multiplier of the nonabelian group of order 6 is the trivial group since every Sylow subgroup is cyclic. The Schur multiplier of the elementary abelian group of order 16 is an elementary abelian group of order 64, showing that the multiplier can be strictly larger than the group itself. The Schur multiplier of the quaternion group is trivial, but the Schur multiplier of dihedral 2-groups ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Centralizer
In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set of elements \mathrm_G(S) of ''G'' such that each member g \in \mathrm_G(S) commutes with each element of ''S'', or equivalently, such that conjugation by g leaves each element of ''S'' fixed. The normalizer of ''S'' in ''G'' is the set of elements \mathrm_G(S) of ''G'' that satisfy the weaker condition of leaving the set S \subseteq G fixed under conjugation. The centralizer and normalizer of ''S'' are subgroups of ''G''. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets ''S''. Suitably formulated, the definitions also apply to semigroups. In ring theory, the centralizer of a subset of a ring is defined with respect to the semigroup (multiplication) operation of the ring. The centralizer of a subset of a ring ''R'' is a subring of ''R''. This article also deals with centralizers and normaliz ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monster Group
In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order    2463205976112133171923293141475971 = 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 ≈ 8. The finite simple groups have been completely classified. Every such group belongs to one of 18 countably infinite families, or is one of 26 sporadic groups that do not follow such a systematic pattern. The monster group contains 20 sporadic groups (including itself) as subquotients. Robert Griess, who proved the existence of the monster in 1982, has called those 20 groups the ''happy family'', and the remaining six exceptions ''pariahs''. It is difficult to give a good constructive definition of the monster because of its complexity. Martin Gardner wrote a popular account of the monster group in his June 1980 Mathematical Games column in ''Scientific ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vertex Operator Algebra
In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence. The related notion of vertex algebra was introduced by Richard Borcherds in 1986, motivated by a construction of an infinite-dimensional Lie algebra due to Igor Frenkel. In the course of this construction, one employs a Fock space that admits an action of vertex operators attached to lattice vectors. Borcherds formulated the notion of vertex algebra by axiomatizing the relations between the lattice vertex operators, producing an algebraic structure that allows one to construct new Lie algebras by following Frenkel's method. The notion of vertex operator algebra was introduced as a modification of the notion of vertex algebra, by Frenke ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]