HOME
*





Heisenberg Equation
In physics, the Heisenberg picture (also called the Heisenberg representation) is a formulation (largely due to Werner Heisenberg in 1925) of quantum mechanics in which the operators ( observables and others) incorporate a dependency on time, but the state vectors are time-independent, an arbitrary fixed basis rigidly underlying the theory. It stands in contrast to the Schrödinger picture in which the operators are constant, instead, and the states evolve in time. The two pictures only differ by a basis change with respect to time-dependency, which corresponds to the difference between active and passive transformations. The Heisenberg picture is the formulation of matrix mechanics in an arbitrary basis, in which the Hamiltonian is not necessarily diagonal. It further serves to define a third, hybrid, picture, the interaction picture. Mathematical details In the Heisenberg picture of quantum mechanics the state vectors , ''ψ''⟩ do not change with time, while observables ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transformation Theory (quantum Mechanics)
The term ''transformation theory'' refers to a procedure and a "picture" used by Paul Dirac in his early formulation of quantum theory, from around 1927. This "transformation" idea refers to the changes a quantum state undergoes in the course of time, whereby its vector "moves" between "positions" or "orientations" in its Hilbert space. Prugovecki, Eduard (2006). ''Quantum Mechanics in Hilbert Space'', Second Edition (Dover Books on Physics) Paperback. Time evolution, quantum transitions, and symmetry transformations in Quantum mechanics may thus be viewed as the systematic theory of abstract, generalized rotations in this space of quantum state vectors. Remaining in full use today, it would be regarded as a topic in the mathematics of Hilbert space, although, technically speaking, it is somewhat more general in scope. While the terminology is reminiscent of rotations of vectors in ordinary space, the Hilbert space of a quantum object is more general, and holds its entire quantum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


BCH Formula
BCH or BCh may refer to: Science and technology * BCH code (Bose–Chaudhuri–Hocquenghem code), a code in coding theory * Bachelor of Surgery, a component of some undergraduate medical degrees * Baker–Campbell–Hausdorff formula, in mathematics and Lie group theory * Biosafety Clearing-House, an international mechanism that exchanges information about the movement of genetically modified organisms * Birdsell Clover Huller, an agricultural machine * Bitcoin Cash, a fork of the cryptocurrency Bitcoin * Bean chitinase, a defensive enzyme Organisations * Birmingham Children's Hospital, a hospital in England * Boston Children’s Hospital, a hospital in Boston, Massachusetts * Blue Castle Holdings, developer of nuclear power stations in the US * British and Commonwealth Holdings, a defunct UK financial services company * Briefmarken-Club_Hannover_von_1886, a German stamp collectors club founded 1886 * Bataliony Chłopskie, a Polish resistance movement in World War II * Belfas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Product Rule
In calculus, the product rule (or Leibniz rule or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as (u \cdot v)' = u ' \cdot v + u \cdot v' or in Leibniz's notation as \frac (u\cdot v) = \frac \cdot v + u \cdot \frac. The rule may be extended or generalized to products of three or more functions, to a rule for higher-order derivatives of a product, and to other contexts. Discovery Discovery of this rule is credited to Gottfried Leibniz, who demonstrated it using differentials. (However, J. M. Child, a translator of Leibniz's papers, argues that it is due to Isaac Barrow.) Here is Leibniz's argument: Let ''u''(''x'') and ''v''(''x'') be two differentiable functions of ''x''. Then the differential of ''uv'' is : \begin d(u\cdot v) & = (u + du)\cdot (v + dv) - u\cdot v \\ & = u\cdot dv + v\cdot du + du\cdot dv. \end Since the term ''du''·''dv'' is "negligi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reduced Planck Constant
The Planck constant, or Planck's constant, is a fundamental physical constant of foundational importance in quantum mechanics. The constant gives the relationship between the energy of a photon and its frequency, and by the mass-energy equivalence, the relationship between mass and frequency. Specifically, a photon's energy is equal to its frequency multiplied by the Planck constant. The constant is generally denoted by h. The reduced Planck constant, or Dirac constant, equal to the constant divided by 2 \pi, is denoted by \hbar. In metrology it is used, together with other constants, to define the kilogram, the SI unit of mass. The SI units are defined in such a way that, when the Planck constant is expressed in SI units, it has the exact value The constant was first postulated by Max Planck in 1900 as part of a solution to the ultraviolet catastrophe. At the end of the 19th century, accurate measurements of the spectrum of black body radiation existed, but the distribut ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Time-evolution Operator
Time evolution is the change of state brought about by the passage of time, applicable to systems with internal state (also called ''stateful systems''). In this formulation, ''time'' is not required to be a continuous parameter, but may be discrete or even finite. In classical physics, time evolution of a collection of rigid bodies is governed by the principles of classical mechanics. In their most rudimentary form, these principles express the relationship between forces acting on the bodies and their acceleration given by Newton's laws of motion. These principles can also be equivalently expressed more abstractly by Hamiltonian mechanics or Lagrangian mechanics. The concept of time evolution may be applicable to other stateful systems as well. For instance, the operation of a Turing machine can be regarded as the time evolution of the machine's control state together with the state of the tape (or possibly multiple tapes) including the position of the machine's read-write he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Linear Operator
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a (linear) ''endomorphism''. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear map' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermitian
{{Short description, none Numerous things are named after the French mathematician Charles Hermite (1822–1901): Hermite * Cubic Hermite spline, a type of third-degree spline * Gauss–Hermite quadrature, an extension of Gaussian quadrature method * Hermite class * Hermite differential equation * Hermite distribution, a parametrized family of discrete probability distributions * Hermite–Lindemann theorem, theorem about transcendental numbers * Hermite constant, a constant related to the geometry of certain lattices * Hermite-Gaussian modes * The Hermite–Hadamard inequality on convex functions and their integrals * Hermite interpolation, a method of interpolating data points by a polynomial * Hermite–Kronecker–Brioschi characterization * The Hermite–Minkowski theorem, stating that only finitely many number fields have small discriminants * Hermite normal form, a form of row-reduced matrices * Hermite numbers, integers related to the Hermite polynomials * Hermite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Expectation Value
In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a large number of independently selected outcomes of a random variable. The expected value of a random variable with a finite number of outcomes is a weighted average of all possible outcomes. In the case of a continuum of possible outcomes, the expectation is defined by integration. In the axiomatic foundation for probability provided by measure theory, the expectation is given by Lebesgue integration. The expected value of a random variable is often denoted by , , or , with also often stylized as or \mathbb. History The idea of the expected value originated in the middle of the 17th century from the study of the so-called problem of points, which seeks to divide the stakes ''in a fair way'' between two players, who have to en ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamiltonian Mechanics
Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta''. Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a link between classical and quantum mechanics. Overview Phase space coordinates (p,q) and Hamiltonian H Let (M, \mathcal L) be a mechanical system with the configuration space M and the smooth Lagrangian \mathcal L. Select a standard coordinate system (\boldsymbol,\boldsymbol) on M. The quantities \textstyle p_i(\boldsymbol,\boldsymbol,t) ~\stackrel~ / are called ''momenta''. (Also ''generalized momenta'', ''conjugate momenta'', and ''canonical momenta''). For a time instant t, the Legendre transformat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poisson Bracket
In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called ''canonical transformations'', which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables (below symbolized by q_i and p_i, respectively) that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself H =H(q, p, t) as one of the new canonical momentum coordinates. In a more general sense, the Poisson bracket is used to define a Poisson algebra, of which the algebra of functions on a Poisson manifold is a special case. There are ot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Classical Physics
Classical physics is a group of physics theories that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the previous theories, or new theories based on the older paradigm, will often be referred to as belonging to the area of "classical physics". As such, the definition of a classical theory depends on context. Classical physical concepts are often used when modern theories are unnecessarily complex for a particular situation. Most often ''classical physics'' refers to pre-1900 physics, while ''modern physics'' refers to post-1900 physics which incorporates elements of quantum mechanics and theory of relativity, relativity. Overview Classical theory has at least two distinct meanings in physics. In the context of quantum mechanics, classical theory refers to theory, theories of physics that do not use the Quantization (physics), quantisation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]