Hammersley–Clifford Theorem
The Hammersley–Clifford theorem is a result in probability theory, mathematical statistics and statistical mechanics that gives necessary and sufficient conditions under which a strictly positive probability distribution (of events in a probability space) can be represented as events generated by a Markov network (also known as a Markov random field). It is the fundamental theorem of random fields. It states that a probability distribution that has a strictly positive mass or density satisfies one of the Markov properties with respect to an undirected graph ''G'' if and only if it is a Gibbs random field, that is, its density can be factorized over the cliques (or complete subgraphs) of the graph. The relationship between Markov and Gibbs random fields was initiated by Roland Dobrushin and Frank Spitzer in the context of statistical mechanics. The theorem is named after John Hammersley and Peter Clifford, who proved the equivalence in an unpublished paper in 1971. Simpler proof ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Theory
Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space. Any specified subset of the sample space is called an event. Central subjects in probability theory include discrete and continuous random variables, probability distributions, and stochastic processes (which provide mathematical abstractions of non-deterministic or uncertain processes or measured quantities that may either be single occurrences or evolve over time in a random fashion). Although it is not possible to perfectly predict random events, much can be said about their behavior. Two major results in probability ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inclusion–exclusion Principle
In combinatorics, a branch of mathematics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as : , A \cup B, = , A, + , B, - , A \cap B, where ''A'' and ''B'' are two finite sets and , ''S'', indicates the cardinality of a set ''S'' (which may be considered as the number of elements of the set, if the set is finite). The formula expresses the fact that the sum of the sizes of the two sets may be too large since some elements may be counted twice. The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection. The inclusion-exclusion principle, being a generalization of the two-set case, is perhaps more clearly seen in the case of three sets, which for the sets ''A'', ''B'' and ''C'' is given by :, A \cup B \cup C, = , A, + , B, + , C, - , A \cap B, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Theorems
Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty."Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory", Alan Stuart and Keith Ord, 6th Ed, (2009), .William Feller, ''An Introduction to Probability Theory and Its Applications'', (Vol 1), 3rd Ed, (1968), Wiley, . The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%). These conce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
University Of Washington
The University of Washington (UW, simply Washington, or informally U-Dub) is a public research university in Seattle, Washington. Founded in 1861, Washington is one of the oldest universities on the West Coast; it was established in Seattle approximately a decade after the city's founding. The university has a 703 acre main campus located in the city's University District, as well as campuses in Tacoma and Bothell. Overall, UW encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, art centers, museums, laboratories, lecture halls, and stadiums. The university offers degrees through 140 departments, and functions on a quarter system. Washington is the flagship institution of the six public universities in Washington state. It is known for its medical, engineering, and scientific research. Washington is a member of the Association of American Universiti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conditional Random Field
Conditional random fields (CRFs) are a class of statistical modeling methods often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without considering "neighbouring" samples, a CRF can take context into account. To do so, the predictions are modelled as a graphical model, which represents the presence of dependencies between the predictions. What kind of graph is used depends on the application. For example, in natural language processing, "linear chain" CRFs are popular, for which each prediction is dependent only on its immediate neighbours. In image processing, the graph typically connects locations to nearby and/or similar locations to enforce that they receive similar predictions. Other examples where CRFs are used are: labeling or parsing of sequential data for natural language processing or biological sequences, part-of-speech tagging, shallow parsing, named entity recogni ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neighborhood Intersections
A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; see spelling differences) is a geographically localised community within a larger city, town, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neighbourhoods are often social communities with considerable face-to-face interaction among members. Researchers have not agreed on an exact definition, but the following may serve as a starting point: "Neighbourhood is generally defined spatially as a specific geographic area and functionally as a set of social networks. Neighbourhoods, then, are the spatial units in which face-to-face social interactions occur—the personal settings and situations where residents seek to realise common values, socialise youth, and maintain effective social control." Preindustrial cities In the words of the urban scholar Lewis Mumford, "Neighbourhoods, in some annoying, inchoate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Merging Two Factorizations Of A Positive Mass Function
Merge, merging, or merger may refer to: Concepts * Merge (traffic), the reduction of the number of lanes on a road * Merge (linguistics), a basic syntactic operation in generative syntax in the Minimalist Program * Merger (politics), the combination of two or more political or administrative entities * Merger (phonology), phonological change whereby originally separate phonemes come to be pronounced exactly the same * Mergers and acquisitions, the buying, selling, dividing and combining of different companies Arts, entertainment, and media * Merger (band), a 1970s English reggae band * ''Merging'' (play), a 2007 one act play written by Charles Messina * Merge Records, an indie-rock record label based in Chapel Hill, North Carolina * ''Merge'', a program broadcast by Lifetime Computer science * Merge (version control), to combine simultaneously changed files in revision control * Merge (software), a Virtual Machine Monitor computer package for running MS-DOS or Windows 9x o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Conditional Independence
In probability theory, conditional independence describes situations wherein an observation is irrelevant or redundant when evaluating the certainty of a hypothesis. Conditional independence is usually formulated in terms of conditional probability, as a special case where the probability of the hypothesis given the uninformative observation is equal to the probability without. If A is the hypothesis, and B and C are observations, conditional independence can be stated as an equality: :P(A\mid B,C) = P(A \mid C) where P(A \mid B, C) is the probability of A given both B and C. Since the probability of A given C is the same as the probability of A given both B and C, this equality expresses that B contributes nothing to the certainty of A. In this case, A and B are said to be conditionally independent given C, written symbolically as: (A \perp\!\!\!\perp B \mid C). The concept of conditional independence is essential to graph-based theories of statistical inference, as it establ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
A Simple Markov Network
A, or a, is the first letter and the first vowel of the Latin alphabet, used in the modern English alphabet, the alphabets of other western European languages and others worldwide. Its name in English is ''a'' (pronounced ), plural ''aes''. It is similar in shape to the Ancient Greek letter alpha, from which it derives. The uppercase version consists of the two slanting sides of a triangle, crossed in the middle by a horizontal bar. The lowercase version can be written in two forms: the double-storey a and single-storey ɑ. The latter is commonly used in handwriting and fonts based on it, especially fonts intended to be read by children, and is also found in italic type. In English grammar, " a", and its variant " an", are indefinite articles. History The earliest certain ancestor of "A" is aleph (also written 'aleph), the first letter of the Phoenician alphabet, which consisted entirely of consonants (for that reason, it is also called an abjad to distinguish it f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of The Royal Statistical Society, Series B
The ''Journal of the Royal Statistical Society'' is a peer-reviewed scientific journal of statistics. It comprises three series and is published by Wiley for the Royal Statistical Society. History The Statistical Society of London was founded in 1834, but would not begin producing a journal for four years. From 1834 to 1837, members of the society would read the results of their studies to the other members, and some details were recorded in the proceedings. The first study reported to the society in 1834 was a simple survey of the occupations of people in Manchester, England. Conducted by going door-to-door and inquiring, the study revealed that the most common profession was mill-hands, followed closely by weavers. When founded, the membership of the Statistical Society of London overlapped almost completely with the statistical section of the British Association for the Advancement of Science. In 1837 a volume of ''Transactions of the Statistical Society of London'' were wri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Julian Besag
Julian Ernst Besag FRS (26 March 1945 – 6 August 2010) was a British statistician known chiefly for his work in spatial statistics (including its applications to epidemiology, image analysis and agricultural science), and Bayesian inference (including Markov chain Monte Carlo algorithms). Early life and education Besag was born in Loughborough and was educated at Loughborough Grammar School. He began studying engineering at the University of Cambridge but moved to the University of Birmingham to study statistics, obtaining his BSc in 1968. Career He then spent a year as a research assistant to Maurice Bartlett at the University of Oxford before obtaining a lectureship at the University of Liverpool. Inspired by John Tukey, he visited Princeton for a year. He moved to the University of Durham in 1975, where he became a professor in 1986. He was a visiting professor at the University of Washington in Seattle during 1989–90 and, after a year at Newcastle University ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Israel Journal Of Mathematics
'' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem (Magnes Press). Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section F), the journal publishes articles on all areas of mathematics. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.70, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... was 0.754. External links * Mathematics journals Publications established in 1963 English-language journals Bimonthly journals Hebrew University of Jerusalem {{math-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |