Halpern–Läuchli Theorem
In mathematics, the Halpern–Läuchli theorem is a partition result about finite products of infinite trees. Its original purpose was to give a model for set theory in which the Boolean prime ideal theorem is true but the axiom of choice is false. It is often called the Halpern–Läuchli theorem, but the proper attribution for the theorem as it is formulated below is to Halpern–Läuchli–Laver–Pincus or HLLP (named after James D. Halpern, Hans Läuchli, Richard Laver, and David Pincus), following . Let ''d'',''r'' < ω, \langle T_i: i \in d \rangle be a sequence of finitely splitting trees of height ω. Let :\bigcup_ \left(\prod_T_i(n)\right) = C_1 \cup \cdots \cup C_r, then there exists a sequence of subtrees \langle S_i: i \in d \rangle strongly embedded in \langle T_i: i \in d \rangle such that :\bigcup_ \left(\prod_S_i(n)\right) \subset C_k\textk \le r. Alternatively, let : S^d_ = \bigcup_ \left(\prod_T_i(n)\right) and : \mathbb^d=\bigcup_ S^d_.. The HLLP th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tree (set Theory)
In set theory, a tree is a partially ordered set (''T'', <) such that for each ''t'' ∈ ''T'', the set is well-ordered by the relation <. Frequently trees are assumed to have only one root (i.e. minimal element), as the typical questions investigated in this field are easily reduced to questions about single-rooted trees. Definition A tree is a (poset) (''T'', <) such that for each ''t'' ∈ ''T'', the set is well-ordered by the relation <. In particular, each well-ordered set (''T'', <) is a tree. For each ''t'' ...[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boolean Prime Ideal Theorem
In mathematics, the Boolean prime ideal theorem states that ideals in a Boolean algebra can be extended to prime ideals. A variation of this statement for filters on sets is known as the ultrafilter lemma. Other theorems are obtained by considering different mathematical structures with appropriate notions of ideals, for example, rings and prime ideals (of ring theory), or distributive lattices and ''maximal'' ideals (of order theory). This article focuses on prime ideal theorems from order theory. Although the various prime ideal theorems may appear simple and intuitive, they cannot be deduced in general from the axioms of Zermelo–Fraenkel set theory without the axiom of choice (abbreviated ZF). Instead, some of the statements turn out to be equivalent to the axiom of choice (AC), while others—the Boolean prime ideal theorem, for instance—represent a property that is strictly weaker than AC. It is due to this intermediate status between ZF and ZF + AC (ZFC) tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom Of Choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by arbitrarily choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family (S_i)_ of nonempty sets, there exists an indexed set (x_i)_ such that x_i \in S_i for every i \in I. The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem. In many cases, a set arising from choosing elements arbitrarily can be made without invoking the axiom of choice; this is, in particular, the case if the number of sets from which to choose the elements is finite, or if a canonical rule on how to choose the elements is available – some distinguis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Richard Laver
Richard Joseph Laver (October 20, 1942 – September 19, 2012) was an American mathematician, working in set theory. Biography Laver received his PhD at the University of California, Berkeley in 1969, under the supervision of Ralph McKenzie, with a thesis on ''Order Types and Well-Quasi-Orderings''. The largest part of his career he spent as Professor and later Emeritus Professor at the University of Colorado at Boulder. Richard Laver died in Boulder, CO, on September 19, 2012 after a long illness. Research contributions Among Laver's notable achievements some are the following. * Using the theory of better-quasi-orders, introduced by Nash-Williams, (an extension of the notion of well-quasi-ordering), he proved Fraïssé's conjecture (now Laver's theorem): if (''A''0,≤),(''A''1,≤),...,(''A''''i'',≤), are countable ordered sets, then for some ''i''<''j'' (''A''i,≤) isomorphically embeds into (''A''''j'',≤). This also holds if the ordered s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Milliken's Tree Theorem
In mathematics, Milliken's tree theorem in combinatorics is a partition theorem generalizing Ramsey's theorem to infinite trees, objects with more structure than sets. Let T be a finitely splitting rooted tree of height ω, n a positive integer, and \mathbb^n_T the collection of all strongly embedded subtrees of T of height n. In one of its simple forms, Milliken's tree theorem states that if \mathbb^n_T=C_1 \cup ... \cup C_r then for some strongly embedded infinite subtree R of T, \mathbb^n_R \subset C_i for some i ≤ r. This immediately implies Ramsey's theorem; take the tree T to be a linear ordering on ω vertices. Define \mathbb^n= \bigcup_T \mathbb^n_T where T ranges over finitely splitting rooted trees of height ω. Milliken's tree theorem says that not only is \mathbb^n partition regular In combinatorics, a branch of mathematics, partition regularity is one notion of largeness for a collection of sets. Given a set X, a collection of subsets \mathbb \subset \mathca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Partition Regular
In combinatorics, a branch of mathematics, partition regularity is one notion of largeness for a collection of sets. Given a set X, a collection of subsets \mathbb \subset \mathcal(X) is called ''partition regular'' if every set ''A'' in the collection has the property that, no matter how ''A'' is partitioned into finitely many subsets, at least one of the subsets will also belong to the collection. That is, for any A \in \mathbb, and any finite partition A = C_1 \cup C_2 \cup \cdots \cup C_n, there exists an ''i'' ≤ ''n'', such that C_i belongs to \mathbb. Ramsey theory is sometimes characterized as the study of which collections \mathbb are partition regular. Examples * the collection of all infinite subsets of an infinite set ''X'' is a prototypical example. In this case partition regularity asserts that every finite partition of an infinite set has an infinite cell (i.e. the infinite pigeonhole principle.) * sets with positive upper density in \mathbb: the ' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transactions Of The American Mathematical Society
The ''Transactions of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. It was established in 1900. As a requirement, all articles must be more than 15 printed pages. See also * ''Bulletin of the American Mathematical Society'' * '' Journal of the American Mathematical Society'' * '' Memoirs of the American Mathematical Society'' * '' Notices of the American Mathematical Society'' * '' Proceedings of the American Mathematical Society'' External links * ''Transactions of the American Mathematical Society''on JSTOR JSTOR (; short for ''Journal Storage'') is a digital library founded in 1995 in New York City. Originally containing digitized back issues of academic journals, it now encompasses books and other primary sources as well as current issues of j ... American Mathematical Society academic journals Mathematics journals Publications established in 1900 {{math-journa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTA Editorial board of JCTB Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. An electronic, [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ramsey Theory
Ramsey theory, named after the British mathematician and philosopher Frank P. Ramsey, is a branch of mathematics that focuses on the appearance of order in a substructure given a structure of a known size. Problems in Ramsey theory typically ask a question of the form: "how big must some structure be to guarantee that a particular property holds?" More specifically, Ron Graham described Ramsey theory as a "branch of combinatorics". Examples A typical result in Ramsey theory starts with some mathematical structure that is then cut into pieces. How big must the original structure be in order to ensure that at least one of the pieces has a given interesting property? This idea can be defined as partition regularity. For example, consider a complete graph of order ''n''; that is, there are ''n'' vertices and each vertex is connected to every other vertex by an edge. A complete graph of order 3 is called a triangle. Now colour each edge either red or blue. How large must ''n'' be i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theorems In The Foundations Of Mathematics
In mathematics, a theorem is a statement that has been proved, or can be proved. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In the mainstream of mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice, or of a less powerful theory, such as Peano arithmetic. A notable exception is Wiles's proof of Fermat's Last Theorem, which involves the Grothendieck universes whose existence requires the addition of a new axiom to the set theory. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |