HOME
*





HD 221287
HD 221287, named Poerava, is a star in the southern constellation of Tucana. It has a yellow-white hue but is too faint to be viewed with the naked eye, having an apparent visual magnitude of 7.82. This object is located at a distance of 183 light years from the Sun, as determined from its parallax. It is drifting closer with a radial velocity of −22 km/s. This object is an F-type main-sequence star with a stellar classification of F7V. It is relatively young with age estimates of 763 million and 1.3 billion years, and possesses an active chromosphere. Cool spots on the surface are generating a radial-velocity signal that is modulated by the rotation period of around five days. The star is 18% larger and 20% more massive than the Sun. It is radiating 1.9 times the luminosity of the Sun from its photosphere at an effective temperature of 6,440 K. Name The star was given the designation "HD 221287" before being named Poerava by representati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tucana
Tucana (The Toucan) is a constellation of stars in the southern sky, named after the toucan, a South American bird. It is one of twelve constellations conceived in the late sixteenth century by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman. Tucana first appeared on a celestial globe published in 1598 in Amsterdam by Plancius and Jodocus Hondius and was depicted in Johann Bayer's star atlas ''Uranometria'' of 1603. French explorer and astronomer Nicolas Louis de Lacaille gave its stars Bayer designations in 1756. The constellations Tucana, Grus, Phoenix and Pavo are collectively known as the "Southern Birds". Tucana is not a prominent constellation as all of its stars are third magnitude or fainter; the brightest is Alpha Tucanae with an apparent visual magnitude of 2.87. Beta Tucanae is a star system with six member stars, while Kappa is a quadruple system. Five star systems have been found to have exoplanets to date. The const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NameExoWorlds
NameExoWorlds (also known as IAU NameExoWorlds) is the name of various projects managed by the International Astronomical Union (I.A.U.) to encourage names to be submitted for astronomical objects, which would later be considered for official adoption by the organization. History The first such project (NameExoWorlds I), in 2015, regarded the naming of stars and exoplanets. 573,242 votes were submitted by members by the time the contest closed on October 31, 2015, and the names of 31 exoplanets and 14 stars were selected from these. Many of the names chosen were based on world history, mythology and literature. In June 2019, another such project (NameExoWorlds II), in celebration of the organization's hundredth anniversary, in a project officially called IAU100 NameExoWorlds, welcomed countries of the world to submit names for exoplanets and their host stars. A star with an exoplanet was assigned to each country, and members of the public submitted names for them. In August 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


HD 100777
HD 100777 is a single star with a planetary companion in the equatorial constellation of Leo. With an apparent visual magnitude of 8.42 it is too faint to be viewed with the naked eye, although the absolute magnitude of 4.81 indicates it could be seen if it were just away. The distance to the star is approximately 162 light years based on parallax measurements. The International Astronomical Union held the NameExoWorlds campaign in 2019. Nepal named the star Sagarmatha("similar to Nepali name of the Mt. Everest") and the exoplanet revolving it was named as Laligurans, the Nepali name of the flower Rhododendron. This is an ordinary G-type main-sequence star with a stellar classification of G8V. It has a similar mass, size, and luminosity to the Sun. The star is roughly five billion years old with an inactive chromosphere and is spinning with a projected rotational velocity of 1.7 km/s. A 2015 survey ruled out the existence of any additional stellar companion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trojan Points
In astronomy, a trojan is a small celestial body (mostly asteroids) that shares the orbit of a larger body, remaining in a stable orbit approximately 60° ahead of or behind the main body near one of its Lagrangian points and . Trojans can share the orbits of planets or of large moons. Trojans are one type of co-orbital object. In this arrangement, a star and a planet orbit about their common barycenter, which is close to the center of the star because it is usually much more massive than the orbiting planet. In turn, a much smaller mass than both the star and the planet, located at one of the Lagrangian points of the star–planet system, is subject to a combined gravitational force that acts through this barycenter. Hence the smallest object orbits around the barycenter with the same orbital period as the planet, and the arrangement can remain stable over time. In the Solar System, most known trojans share the orbit of Jupiter. They are divided into the Greek camp at (a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbital Eccentricity
In astrodynamics, the orbital eccentricity of an astronomical object is a dimensionless parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is normally used for the isolated two-body problem, but extensions exist for objects following a rosette orbit through the Galaxy. Definition In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit. The eccentricity of this Kepler orbit is a non-negative number that defines its shape. The eccentricity may take the following values: * circular orbit: ''e'' = 0 * elliptic orbit: 0 < ''e'' < 1 *
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Earth
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surface is made up of the ocean, dwarfing Earth's polar ice, lakes, and rivers. The remaining 29% of Earth's surface is land, consisting of continents and islands. Earth's surface layer is formed of several slowly moving tectonic plates, which interact to produce mountain ranges, volcanoes, and earthquakes. Earth's liquid outer core generates the magnetic field that shapes the magnetosphere of the Earth, deflecting destructive solar winds. The atmosphere of the Earth consists mostly of nitrogen and oxygen. Greenhouse gases in the atmosphere like carbon dioxide (CO2) trap a part of the energy from the Sun close to the surface. Water vapor is widely present in the atmosphere and forms clouds that cover most of the planet. More solar e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superjovian
A super-Jupiter is a gas giant exoplanet that is more massive than the planet Jupiter. For example, companions at the planet–brown dwarf borderline have been called super-Jupiters, such as around the star Kappa Andromedae. By 2011 there were 180 known super-Jupiters, some hot, some cold. Even though they are more massive than Jupiter, they remain about the same size as Jupiter up to 80 Jupiter masses. This means that their surface gravity and density go up proportionally to their mass. The increased mass compresses the planet due to gravity, thus keeping it from being larger. In comparison, planets somewhat lighter than Jupiter can be larger, so-called "puffy planets" (gas giants with a large diameter but low density). An example of this may be the exoplanet HAT-P-1b with about half the mass of Jupiter but about 1.38 times larger diameter. CoRoT-3b, with a mass around 22 Jupiter masses, is predicted to have an average density of 26.4 g/cm3, greater than osmium (22.6 g/cm3), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth the mass of the Sun. Jupiter is the List of brightest natural objects in the sky, third brightest natural object in the Earth's night sky after the Moon and Venus, and it has been observed since Pre-history, prehistoric times. It was named after the Jupiter (mythology), Roman god Jupiter, the king of the gods. Jupiter is primarily composed of hydrogen, but helium constitutes one-quarter of its mass and one-tenth of its volume. It probably has a rocky core of heavier elements, but, like the other giant planets in the Solar System, it lacks a well-defined solid surface. The ongoing contraction of Jupiter's interior generates more heat than it receives from the Sun. Because of its rapid rotation, the planet' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minimum Mass
In astronomy, minimum mass is the lower-bound calculated mass of observed objects such as planets, stars and binary systems, nebulae, and black holes. Minimum mass is a widely cited statistic for extrasolar planets detected by the radial velocity method or Doppler spectroscopy, and is determined using the binary mass function. This method reveals planets by measuring changes in the movement of stars in the line-of-sight, so the real orbital inclinations and true masses of the planets are generally unknown. This is a result of sin ''i'' degeneracy. If inclination ''i'' can be determined, the true mass can be obtained from the calculated minimum mass using the following relationship: M_\text = \frac Exoplanets Orientation of the transit to Earth Most stars will not have their planets lined up and orientated so that they eclipse over the center of the star and give the viewer on earth a perfect transit. It is for this reason that when we often are only able to extrapolate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


HD 221287 B
HD 221287 b, also known as Pipitea, is an exoplanet that orbits HD 221287, approximately 173 light years away in the constellation of Tucana. This planet has mass >3.12 MJ (>992 M🜨) and orbits in a habitable zone at 1.25 AUs (6.06 μpc) from the star, taking 1.25 years to orbit at 29.9 km/s around the star. Dominique Naef discovered this planet in early 2007 by using HARPS spectrograph An optical spectrometer (spectrophotometer, spectrograph or spectroscope) is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify mate ... located in Chile. Based on a probable 10−4 fraction of the planet mass as a satellite, the planet can have a Mars-sized moon with habitable surface. On the other hand, this mass can be distributed into many small satellites as well. It was named "Pipitea" by representatives of the Cook Islands in the IAU's 2019 NameExoWorlds contest, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exoplanet
An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, initially detected in 1988, was confirmed in 2003. There are many methods of detecting exoplanets. Transit photometry and Doppler spectroscopy have found the most, but these methods suffer from a clear observational bias favoring the detection of planets near the star; thus, 85% of the exoplanets detected are inside the tidal locking zone. In several cases, multiple planets have been observed around a star. About 1 in 5 Sun-like starsFor the purpose of this 1 in 5 statistic, "Sun-like" means G-type star. Data for Sun-like stars was not available so this statistic is an extrapolation from data about K-type stars. have an "Earth-sized"For the purpose of this 1 in 5 statistic, Earth-sized means 1–2 Earth radii. planet in the habitable zone. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectrograph
An optical spectrometer (spectrophotometer, spectrograph or spectroscope) is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify materials. The variable measured is most often the light's intensity but could also, for instance, be the polarization state. The independent variable is usually the wavelength of the light or a unit directly proportional to the photon energy, such as reciprocal centimeters or electron volts, which has a reciprocal relationship to wavelength. A spectrometer is used in spectroscopy for producing spectral lines and measuring their wavelengths and intensities. Spectrometers may operate over a wide range of non-optical wavelengths, from gamma rays and X-rays into the far infrared. If the instrument is designed to measure the spectrum on an absolute scale rather than a relative one, then it is typically called a spectrophotometer. The majority o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]