H.261
   HOME
*





H.261
H.261 is an ITU-T video compression standard, first ratified in November 1988. It is the first member of the H.26x family of video coding standards in the domain of the ITU-T Study Group 16 Video Coding Experts Group (VCEG, then Specialists Group on Coding for Visual Telephony). It was the first video coding standard that was useful in practical terms. H.261 was originally designed for transmission over ISDN lines on which data rates are multiples of 64 kbit/s. The coding algorithm was designed to be able to operate at video bit rates between 40 kbit/s and 2 Mbit/s. The standard supports two video frame sizes: CIF (352×288 luma with 176×144 chroma) and QCIF (176×144 with 88×72 chroma) using a 4:2:0 sampling scheme. It also has a backward-compatible trick for sending still images with 704×576 luma resolution and 352×288 chroma resolution (which was added in a later revision in 1993). History The first digital video coding standard was H.120, created by the CCITT (now ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Common Intermediate Format
CIF (''Common Intermediate Format'' or ''Common Interchange Format''), also known as FCIF (''Full Common Intermediate Format''), is a standardized format for the picture resolution, frame rate, color space, and color subsampling of digital video sequences used in video teleconferencing systems. It was first defined in the H.261 standard in 1988. As the word "common" in its name implies, CIF was designed as a common compromise format to be relatively easy to convert for use either with PAL or NTSC standard displays and cameras. CIF defines a video sequence with a resolution of 352 × 288, which has a simple relationship to the PAL picture size, but with a frame rate of 30000/1001 (roughly 29.97) frames per second like NTSC, with color encoded using a YCbCr representation with 4:2:0 color sampling. It was designed as a compromise between PAL and NTSC schemes, since it uses a picture size that corresponds most easily to PAL, but uses the frame rate of NTSC. The compromise was esta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Video Compression Standard
A video coding format (or sometimes video compression format) is a content representation format for storage or transmission of digital video content (such as in a data file or bitstream). It typically uses a standardized video compression algorithm, most commonly based on discrete cosine transform (DCT) coding and motion compensation. A specific software, firmware, or hardware implementation capable of compression or decompression to/from a specific video coding format is called a video codec. Some video coding formats are documented by a detailed technical specification document known as a video coding specification. Some such specifications are written and approved by standardization organizations as technical standards, and are thus known as a video coding standard. The term 'standard' is also sometimes used for ''de facto'' standards as well as formal standards. Video content encoded using a particular video coding format is normally bundled with an audio stream (encoded u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Video Coding Standard
A video coding format (or sometimes video compression format) is a content representation format for storage or transmission of digital video content (such as in a data file or bitstream). It typically uses a standardized video compression algorithm, most commonly based on discrete cosine transform (DCT) coding and motion compensation. A specific software, firmware, or hardware implementation capable of compression or decompression to/from a specific video coding format is called a video codec. Some video coding formats are documented by a detailed technical specification document known as a video coding specification. Some such specifications are written and approved by standardization organizations as technical standards, and are thus known as a video coding standard. The term 'standard' is also sometimes used for ''de facto'' standards as well as formal standards. Video content encoded using a particular video coding format is normally bundled with an audio stream (encoded ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Macroblock
The macroblock is a processing unit in image and video compression formats based on linear block transforms, typically the discrete cosine transform (DCT). A macroblock typically consists of 16×16 samples, and is further subdivided into transform blocks, and may be further subdivided into prediction blocks. Formats which are based on macroblocks include JPEG, where they are called MCU blocks, H.261, MPEG-1 Part 2, H.262/MPEG-2 Part 2, H.263, MPEG-4 Part 2, and H.264/MPEG-4 AVC. In H.265/HEVC, the macroblock as a basic processing unit has been replaced by the coding tree unit. Technical details Transform blocks A macroblock is divided into transform blocks, which serve as input to the linear block transform, e.g. the DCT. In H.261, the first video codec to use macroblocks, transform blocks have a fixed size of 8×8 samples. In the YCbCr color space with 4:2:0 chroma subsampling, a 16×16 macroblock consists of 16×16 luma (Y) samples and 8×8 chroma (Cb and Cr) samples. These ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Video Coding Experts Group
The Video Coding Experts Group or Visual Coding Experts Group (VCEG, also known as Question 6) is a working group of the ITU Telecommunication Standardization Sector (ITU-T) concerned with standards for compression coding of video, images, audio, and other signals. It is responsible for standardization of the "H.26x" line of video coding standards, the "T.8xx" line of image coding standards, and related technologies. Administratively, VCEG is the informal name of Question 6 (Visual, audio and signal coding) of Working Party 3 (Audiovisual technologies and intelligent immersive applications) of ITU-T Study Group 16 (Multimedia and related digital technologies). Its abbreviated title is ITU-T Q.6/SG16, or more simply, ITU-T Q6/16. The goal of VCEG is to produce ITU-T Recommendations (international standards) for video coding and image coding methods appropriate for conversational (e.g. videoconferencing and video telephony) and non-conversational (e.g., streaming, broadcast, file d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


VCEG
The Video Coding Experts Group or Visual Coding Experts Group (VCEG, also known as Question 6) is a working group of the ITU Telecommunication Standardization Sector (ITU-T) concerned with standards for compression coding of video, images, audio, and other signals. It is responsible for standardization of the "H.26x" line of video coding standards, the "T.8xx" line of image coding standards, and related technologies. Administratively, VCEG is the informal name of Question 6 (Visual, audio and signal coding) of Working Party 3 (Audiovisual technologies and intelligent immersive applications) of ITU-T Study Group 16 (Multimedia and related digital technologies). Its abbreviated title is ITU-T Q.6/SG16, or more simply, ITU-T Q6/16. The goal of VCEG is to produce ITU-T Recommendations (international standards) for video coding and image coding methods appropriate for conversational (e.g. videoconferencing and video telephony) and non-conversational (e.g., streaming, broadcast, file d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Video Compression
In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important information. Typically, a device that performs data compression is referred to as an encoder, and one that performs the reversal of the process (decompression) as a decoder. The process of reducing the size of a data file is often referred to as data compression. In the context of data transmission, it is called source coding; encoding done at the source of the data before it is stored or transmitted. Source coding should not be confused with channel coding, for error detection and correction or line coding, the means for mapping data onto a signal. C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Video
Video is an electronic medium for the recording, copying, playback, broadcasting, and display of moving visual media. Video was first developed for mechanical television systems, which were quickly replaced by cathode ray tube (CRT) systems which were later replaced by flat panel displays of several types. Video systems vary in display resolution, aspect ratio, refresh rate, color capabilities and other qualities. Analog and digital variants exist and can be carried on a variety of media, including radio broadcast, magnetic tape, optical discs, computer files, and network streaming. History Analog video Video technology was first developed for mechanical television systems, which were quickly replaced by cathode ray tube (CRT) television systems, but several new technologies for video display devices have since been invented. Video was originally exclusively a live technology. Charles Ginsburg led an Ampex research team developing one of the first practical video t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

HEVC
High Efficiency Video Coding (HEVC), also known as H.265 and MPEG-H Part 2, is a video compression standard designed as part of the MPEG-H project as a successor to the widely used Advanced Video Coding (AVC, H.264, or MPEG-4 Part 10). In comparison to AVC, HEVC offers from 25% to 50% better data compression at the same level of video quality, or substantially improved video quality at the same bit rate. It supports resolutions up to 8192×4320, including 8K UHD, and unlike the primarily 8-bit AVC, HEVC's higher fidelity Main 10 profile has been incorporated into nearly all supporting hardware. While AVC uses the integer discrete cosine transform (DCT) with 4×4 and 8×8 block sizes, HEVC uses integer DCT and DST transforms with varied block sizes between 4×4 and 32×32. The High Efficiency Image Format (HEIF) is based on HEVC. , HEVC is used by 43% of video developers, and is the second most widely used video coding format after AVC. Concept In most ways, HEVC is an extensio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integrated Services Digital Network
Integrated Services Digital Network (ISDN) is a set of communication standards for simultaneous digital transmission of voice, video, data, and other network services over the digitalised circuits of the public switched telephone network. Work on the standard began in 1980 at Bell Labs and was formally standardized in 1988 in the CCITT "Red Book". By the time the standard was released, newer networking systems with much greater speeds were available, and ISDN saw relatively little uptake in the wider market. One estimate suggests ISDN use peaked at a worldwide total of 25 million subscribers at a time when 1.3 billion analog lines were in use. ISDN has largely been replaced with digital subscriber line (DSL) systems of much higher performance. Prior to ISDN, the telephone system consisted of digital links like T1/ E1 on the long-distance lines between telephone company offices and analog signals on copper telephone wires to the customers, the " last mile". At the time, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ITU-T
The ITU Telecommunication Standardization Sector (ITU-T) is one of the three sectors (divisions or units) of the International Telecommunication Union (ITU). It is responsible for coordinating standards for telecommunications and Information Communication Technology such as X.509 for cybersecurity, Y.3172 and Y.3173 for machine learning, and H.264/MPEG-4 AVC for video compression, between its Member States, Private Sector Members, and Academia Members. The first meeting of the World Telecommunication Standardization Assembly (WTSA), the sector's governing conference, took place on 1 March of that year. ITU-T has a permanent secretariat called the Telecommunication Standardization Bureau (TSB), which is based at the ITU headquarters in Geneva, Switzerland. The current director of the TSB is Chaesub Lee (of South Korea), whose first 4-year term commenced on 1 January 2015, and whose second 4-year term commenced on 1 January 2019. Chaesub Lee succeeded Malcolm Johnson (Director), Malc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




CCITT
The ITU Telecommunication Standardization Sector (ITU-T) is one of the three sectors (divisions or units) of the International Telecommunication Union (ITU). It is responsible for coordinating standards for telecommunications and Information Communication Technology such as X.509 for cybersecurity, Y.3172 and Y.3173 for machine learning, and H.264/MPEG-4 AVC for video compression, between its Member States, Private Sector Members, and Academia Members. The first meeting of the World Telecommunication Standardization Assembly (WTSA), the sector's governing conference, took place on 1 March of that year. ITU-T has a permanent secretariat called the Telecommunication Standardization Bureau (TSB), which is based at the ITU headquarters in Geneva, Switzerland. The current director of the TSB is Chaesub Lee (of South Korea), whose first 4-year term commenced on 1 January 2015, and whose second 4-year term commenced on 1 January 2019. Chaesub Lee succeeded Malcolm Johnson of the United ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]