Green's Identities
   HOME
*





Green's Identities
In mathematics, Green's identities are a set of three identities in vector calculus relating the bulk with the boundary of a region on which differential operators act. They are named after the mathematician George Green, who discovered Green's theorem. Green's first identity This identity is derived from the divergence theorem applied to the vector field while using an extension of the product rule that : Let and be scalar functions defined on some region , and suppose that is twice continuously differentiable, and is once continuously differentiable. Using the product rule above, but letting , integrate over . Then \int_U \left( \psi \, \Delta \varphi + \nabla \psi \cdot \nabla \varphi \right)\, dV = \oint_ \psi \left( \nabla \varphi \cdot \mathbf \right)\, dS=\oint_\psi\,\nabla\varphi\cdot d\mathbf where is the Laplace operator, is the boundary of region , is the outward pointing unit normal to the surface element and is the oriented surface element. This the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laplace Equation
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \nabla \cdot \nabla = \nabla^2 is the Laplace operator,The delta symbol, Δ, is also commonly used to represent a finite change in some quantity, for example, \Delta x = x_1 - x_2. Its use to represent the Laplacian should not be confused with this use. \nabla \cdot is the divergence operator (also symbolized "div"), \nabla is the gradient operator (also symbolized "grad"), and f (x, y, z) is a twice-differentiable real-valued function. The Laplace operator therefore maps a scalar function to another scalar function. If the right-hand side is specified as a given function, h(x, y, z), we have \Delta f = h. This is called Poisson's equation, a generalization of Laplace's equation. Laplace's equation and Poisson's equation are the simplest exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lagrange's Identity (boundary Value Problem)
In the study of ordinary differential equations and their associated boundary value problems, Lagrange's identity, named after Joseph Louis Lagrange, gives the boundary terms arising from integration by parts of a self-adjoint linear differential operator. Lagrange's identity is fundamental in Sturm–Liouville theory. In more than one independent variable, Lagrange's identity is generalized by Green's second identity. Statement In general terms, Lagrange's identity for any pair of functions ''u'' and ''v'' in function space ''C''2 (that is, twice differentiable) in ''n'' dimensions is: vL uL^* \nabla \cdot \boldsymbol M, where: M_i = \sum_^n a_\left( v \frac -u \frac \right ) + uv \left( b_i - \sum_^ \frac \right ), and \nabla \cdot \boldsymbol M = \sum_^n \frac M_i, The operator ''L'' and its adjoint operator ''L''* are given by: L = \sum_^n a_ \frac + \sum_^n b_i \frac +c u and L^* = \sum_^n \frac - \sum_^n \frac + cv. If Lagrange's identity is integrate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kirchhoff Integral Theorem
Kirchhoff's integral theorem (sometimes referred to as the Fresnel–Kirchhoff integral theorem) is a surface integral to obtain the value of the solution of the homogeneous scalar wave equation at an arbitrary point P in terms of the values of the solution and the solution's first-order derivative at all points on an arbitrary closed surface (on which the integration is performed) that encloses P.Max Born and Emil Wolf, ''Principles of Optics'', 7th edition, 1999, Cambridge University Press, Cambridge, pp. 418–421. It is derived by using the Green's second identity and the homogeneous scalar wave equation that makes the volume integration in the Green's second identity zero. Integral Monochromatic wave The integral has the following form for a monochromatic wave:Introduction to Fourier Optics J. Goodman sec. 3.3.3 :U(\mathbf) = \frac \int_S \left U \frac \left( \frac \right) - \frac \frac \rightdS, where the integration is performed over an arbitrary closed surface ''S'' enc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Curl (mathematics)
In vector calculus, the curl is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. The curl of a field is formally defined as the circulation density at each point of the field. A vector field whose curl is zero is called irrotational. The curl is a form of differentiation for vector fields. The corresponding form of the fundamental theorem of calculus is Stokes' theorem, which relates the surface integral of the curl of a vector field to the line integral of the vector field around the boundary curve. is a notation common today to the United States and Americas. In many European countries, particularly in classic scientific literature, the alternative notation is traditionally used, which is spelled as "rotor", and comes from the "rate of rotation", which it rep ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kirchhoff's Diffraction Formula
Kirchhoff's diffraction formula (also Fresnel–Kirchhoff diffraction formula) can be used to model the propagation of light in a wide range of configurations, either analytically or using numerical modelling. It gives an expression for the wave disturbance when a monochromatic spherical wave is the incoming wave of a situation under consideration. This formula is derived by applying the Kirchhoff integral theorem, which uses the Green's second identity to derive the solution to the homogeneous scalar wave equation, to a spherical wave with some approximations. The Huygens–Fresnel principle is derived by the Fresnel-Kirchhoff diffraction formula. Derivation of Kirchhoff's diffraction formula Kirchhoff's integral theorem, sometimes referred to as the Fresnel–Kirchhoff integral theorem, uses Green's second identity to derive the solution of the homogeneous scalar wave equation at an arbitrary spatial position P in terms of the solution of the wave equation and its first or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Huygens Principle
Huygens (also Huijgens, Huigens, Huijgen/Huygen, or Huigen) is a Dutch patronymic surname, meaning "son of Hugo". Most references to "Huygens" are to the polymath Christiaan Huygens. Notable people with the surname include: * Jan Huygen (1563–1611), Dutch voyager and historian * Constantijn Huygens (1596–1687), Dutch poet, diplomat, scholar and composer * Constantijn Huygens, Jr. (1628–1697), Dutch statesman, soldier, and telescope maker, son of Constantijn Huygens * Christiaan Huygens (1629–1695), Dutch mathematician, physicist and astronomer, son of Constantijn Huygens * Lodewijck Huygens (1631–1699), Dutch diplomat, the third son of Constantijn Huygens * Cornélie Huygens (1848–1902), Dutch writer, social democrat and feminist * Léon Huygens (1876–1918), Belgian painter * Jan Huijgen (1888–1964), Dutch speedwalker * Christiaan Huijgens (1897–1963), Dutch long-distance runner * Wil Huygen (1922–2009), Dutch children's and fantasy writer, e.g. of Gnomes Na ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wave Equation
The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields — as they occur in classical physics — such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics. Single mechanical or electromagnetic waves propagating in a pre-defined direction can also be described with the first-order one-way wave equation which is much easier to solve and also valid for inhomogenious media. Introduction The (two-way) wave equation is a second-order partial differential equation describing waves, including traveling and standing waves; the latter can be considered as linear superpositions of waves traveling in opposite directions. This article mostly focuses on the scalar wave equation describing waves in scalars by scalar functions of a time variable (a variable repres ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Helmholtz Equation
In mathematics, the eigenvalue problem for the Laplace operator is known as the Helmholtz equation. It corresponds to the linear partial differential equation \nabla^2 f = -k^2 f, where is the Laplace operator (or "Laplacian"), is the eigenvalue, and is the (eigen)function. When the equation is applied to waves, is known as the wave number. The Helmholtz equation has a variety of applications in physics, including the wave equation and the diffusion equation, and it has uses in other sciences. Motivation and uses The Helmholtz equation often arises in the study of physical problems involving partial differential equations (PDEs) in both space and time. The Helmholtz equation, which represents a time-independent form of the wave equation, results from applying the technique of separation of variables to reduce the complexity of the analysis. For example, consider the wave equation \left(\nabla^2-\frac\frac\right) u(\mathbf,t)=0. Separation of variables begins by assumi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divergence Theorem
In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, reprinted in is a theorem which relates the ''flux'' of a vector field through a closed surface to the ''divergence'' of the field in the volume enclosed. More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the "flux" through the surface, is equal to the volume integral of the divergence over the region inside the surface. Intuitively, it states that "the sum of all sources of the field in a region (with sinks regarded as negative sources) gives the net flux out of the region". The divergence theorem is an important result for the mathematics of physics and engineering, particularly in electrostatics and fluid dynamics. In these fields, it is usually applied in three dimensions. However, it generalizes to any number of dimensions. In one dimension, it is equivalent to integration by parts. In two di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Neumann Boundary Condition
In mathematics, the Neumann (or second-type) boundary condition is a type of boundary condition, named after Carl Neumann. When imposed on an ordinary or a partial differential equation, the condition specifies the values of the derivative applied at the boundary of the domain. It is possible to describe the problem using other boundary conditions: a Dirichlet boundary condition specifies the values of the solution itself (as opposed to its derivative) on the boundary, whereas the Cauchy boundary condition, mixed boundary condition and Robin boundary condition are all different types of combinations of the Neumann and Dirichlet boundary conditions. Examples ODE For an ordinary differential equation, for instance, :y'' + y = 0, the Neumann boundary conditions on the interval take the form :y'(a)= \alpha, \quad y'(b) = \beta, where and are given numbers. PDE For a partial differential equation, for instance, :\nabla^2 y + y = 0, where denotes the Laplace operator, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet Boundary Condition
In the mathematical study of differential equations, the Dirichlet (or first-type) boundary condition is a type of boundary condition, named after Peter Gustav Lejeune Dirichlet (1805–1859). When imposed on an ordinary or a partial differential equation, it specifies the values that a solution needs to take along the boundary of the domain. In finite element method (FEM) analysis, ''essential'' or Dirichlet boundary condition is defined by weighted-integral form of a differential equation. The dependent unknown ''u in the same form as the weight function w'' appearing in the boundary expression is termed a ''primary variable'', and its specification constitutes the ''essential'' or Dirichlet boundary condition. The question of finding solutions to such equations is known as the Dirichlet problem. In applied sciences, a Dirichlet boundary condition may also be referred to as a fixed boundary condition. Examples ODE For an ordinary differential equation, for instance, y'' + y ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]