Graph Structure Theorem
   HOME
*





Graph Structure Theorem
In mathematics, the graph structure theorem is a major result in the area of graph theory. The result establishes a deep and fundamental connection between the theory of graph minors and topological embeddings. The theorem is stated in the seventeenth of a series of 23 papers by Neil Robertson and Paul Seymour. Its proof is very long and involved. and are surveys accessible to nonspecialists, describing the theorem and its consequences. Setup and motivation for the theorem A minor of a graph is any graph that is isomorphic to a graph that can be obtained from a subgraph of by contracting some edges. If does ''not'' have a graph as a minor, then we say that is -free. Let be a fixed graph. Intuitively, if is a huge -free graph, then there ought to be a "good reason" for this. The graph structure theorem provides such a "good reason" in the form of a rough description of the structure of . In essence, every -free graph suffers from one of two structural deficie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Klein Bottle
In topology, a branch of mathematics, the Klein bottle () is an example of a non-orientable surface; it is a two-dimensional manifold against which a system for determining a normal vector cannot be consistently defined. Informally, it is a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down. Other related non-orientable objects include the Möbius strip and the real projective plane. While a Möbius strip is a surface with boundary, a Klein bottle has no boundary. For comparison, a sphere is an orientable surface with no boundary. The concept of a Klein bottle was first described in 1882 by the German mathematician Felix Klein. Construction The following square is a fundamental polygon of the Klein bottle. The idea is to 'glue' together the corresponding red and blue edges with the arrows matching, as in the diagrams below. Note that this is an "abstract" gluing in the sense that trying to realize ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Combinatorial Theory
The ''Journal of Combinatorial Theory'', Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. ''Series A'' is concerned primarily with structures, designs, and applications of combinatorics. ''Series B'' is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as ''JCTA'' and ''JCTB''. The journal was founded in 1966 by Frank Harary and Gian-Carlo Rota.They are acknowledged on the journals' title pages and Web sites. SeEditorial board of JCTAEditorial board of JCTB
Originally there was only one journal, which was split into two parts in 1971 as the field grew rapidly. An electronic,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bulletin Of The American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. It also publishes, by invitation only, book reviews and short ''Mathematical Perspectives'' articles. History It began as the ''Bulletin of the New York Mathematical Society'' and underwent a name change when the society became national. The Bulletin's function has changed over the years; its original function was to serve as a research journal for its members. Indexing The Bulletin is indexed in Mathematical Reviews, Science Citation Index, ISI Alerting Services, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. See also *'' Journal of the American Mathematical Society'' *''Memoirs of the American Mathematical Society'' *''Notices of the American Mathematical Society'' *'' Proceedings of the American M ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graphs And Combinatorics
''Graphs and Combinatorics'' (ISSN 0911-0119, abbreviated ''Graphs Combin.'') is a peer-reviewed academic journal in graph theory, combinatorics, and discrete geometry published by Springer Japan. Its editor-in-chief is Katsuhiro Ota of Keio University. The journal was first published in 1985. Its founding editor in chief was Hoon Heng Teh of Singapore, the president of the Southeast Asian Mathematics Society, and its managing editor was Jin Akiyama. Originally, it was subtitled "An Asian Journal". In most years since 1999, it has been ranked as a second-quartile journal in discrete mathematics and theoretical computer science computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the ... by SCImago Journal Rank.. References {{reflist Publications established in 1985 Combinatorics jo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Robertson–Seymour Theorem
In graph theory, the Robertson–Seymour theorem (also called the graph minor theorem) states that the undirected graphs, partially ordered by the graph minor relationship, form a well-quasi-ordering. Equivalently, every family of graphs that is closed under minors can be defined by a finite set of forbidden minors, in the same way that Wagner's theorem characterizes the planar graphs as being the graphs that do not have the complete graph ''K''5 or the complete bipartite graph ''K''3,3 as minors. The Robertson–Seymour theorem is named after mathematicians Neil Robertson and Paul D. Seymour, who proved it in a series of twenty papers spanning over 500 pages from 1983 to 2004. Before its proof, the statement of the theorem was known as Wagner's conjecture after the German mathematician Klaus Wagner, although Wagner said he never conjectured it. A weaker result for trees is implied by Kruskal's tree theorem, which was conjectured in 1937 by Andrew Vázsonyi and proved in 1960 in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Crossing Number (graph Theory)
In graph theory, the crossing number of a graph is the lowest number of edge crossings of a plane drawing of the graph . For instance, a graph is planar if and only if its crossing number is zero. Determining the crossing number continues to be of great importance in graph drawing, as user studies have shown that drawing graphs with few crossings makes it easier for people to understand the drawing. The study of crossing numbers originated in Turán's brick factory problem, in which Pál Turán asked for a factory plan that minimized the number of crossings between tracks connecting brick kilns to storage sites. Mathematically, this problem can be formalized as asking for the crossing number of a complete bipartite graph. The same problem arose independently in sociology at approximately the same time, in connection with the construction of sociograms. Turán's conjectured formula for the crossing numbers of complete bipartite graphs remains unproven, as does an analogous formu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Clique-sum
In graph theory, a branch of mathematics, a clique-sum is a way of combining two graphs by gluing them together at a clique, analogous to the connected sum operation in topology. If two graphs ''G'' and ''H'' each contain cliques of equal size, the clique-sum of ''G'' and ''H'' is formed from their disjoint union by identifying pairs of vertices in these two cliques to form a single shared clique, and then possibly deleting some of the clique edges. A ''k''-clique-sum is a clique-sum in which both cliques have at most ''k'' vertices. One may also form clique-sums and ''k''-clique-sums of more than two graphs, by repeated application of the two-graph clique-sum operation. Different sources disagree on which edges should be removed as part of a clique-sum operation. In some contexts, such as the decomposition of chordal graphs or strangulated graphs, no edges should be removed. In other contexts, such as the SPQR-tree decomposition of graphs into their 3-vertex-connected components, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tree Decomposition
In graph theory, a tree decomposition is a mapping of a graph into a tree that can be used to define the treewidth of the graph and speed up solving certain computational problems on the graph. Tree decompositions are also called junction trees, clique trees, or join trees. They play an important role in problems like probabilistic inference, constraint satisfaction, query optimization, and matrix decomposition. The concept of tree decomposition was originally introduced by . Later it was rediscovered by and has since been studied by many other authors. Definition Intuitively, a tree decomposition represents the vertices of a given graph as subtrees of a tree, in such a way that vertices in are adjacent only when the corresponding subtrees intersect. Thus, forms a subgraph of the intersection graph of the subtrees. The full intersection graph is a chordal graph. Each subtree associates a graph vertex with a set of tree nodes. To define this formally, we represent each t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Apex Graph
In graph theory, a branch of mathematics, an apex graph is a graph that can be made planar by the removal of a single vertex. The deleted vertex is called an apex of the graph. It is ''an'' apex, not ''the'' apex because an apex graph may have more than one apex; for example, in the minimal nonplanar graphs or , every vertex is an apex. The apex graphs include graphs that are themselves planar, in which case again every vertex is an apex. The null graph is also counted as an apex graph even though it has no vertex to remove. Apex graphs are closed under the operation of taking minors and play a role in several other aspects of graph minor theory: linkless embedding, Hadwiger's conjecture,. YΔY-reducible graphs, and relations between treewidth and graph diameter. Characterization and recognition Apex graphs are closed under the operation of taking minors: contracting any edge, or removing any edge or vertex, leads to another apex graph. For, if is an apex graph with apex , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pathwidth
In graph theory, a path decomposition of a graph is, informally, a representation of as a "thickened" path graph, and the pathwidth of is a number that measures how much the path was thickened to form . More formally, a path-decomposition is a sequence of subsets of vertices of such that the endpoints of each edge appear in one of the subsets and such that each vertex appears in a contiguous subsequence of the subsets,. and the pathwidth is one less than the size of the largest set in such a decomposition. Pathwidth is also known as interval thickness (one less than the maximum clique size in an interval supergraph of ), vertex separation number, or node searching number. Pathwidth and path-decompositions are closely analogous to treewidth and tree decompositions. They play a key role in the theory of graph minors: the families of graphs that are closed under graph minors and do not include all forests may be characterized as having bounded pathwidth, and the "vortices ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wagner's Theorem
In graph theory, Wagner's theorem is a mathematical forbidden graph characterization of planar graphs, named after Klaus Wagner, stating that a finite graph is planar if and only if its minors include neither ''K''5 (the complete graph on five vertices) nor ''K''3,3 (the utility graph, a complete bipartite graph on six vertices). This was one of the earliest results in the theory of graph minors and can be seen as a forerunner of the Robertson–Seymour theorem. Definitions and statement A planar embedding of a given graph is a drawing of the graph in the Euclidean plane, with points for its vertices and curves for its edges, in such a way that the only intersections between pairs of edges are at a common endpoint of the two edges. A minor of a given graph is another graph formed by deleting vertices, deleting edges, and contracting edges. When an edge is contracted, its two endpoints are merged to form a single vertex. In some versions of graph minor theory the graph r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]