Graph Coloring Game
   HOME
*





Graph Coloring Game
The graph coloring game is a mathematical game related to graph theory. Coloring game problems arose as game-theoretic versions of well-known graph coloring problems. In a coloring game, two players use a given set of colors to construct a coloring of a graph, following specific rules depending on the game we consider. One player tries to successfully complete the coloring of the graph, when the other one tries to prevent him from achieving it. Vertex coloring game The vertex coloring game was introduced in 1981 by Brams and rediscovered ten years after by Bodlaender. Its rules are as follows: # Alice and Bob color the vertices of a graph ''G'' with a set ''k'' of colors. # Alice and Bob take turns, coloring properly an uncolored vertex (in the standard version, Alice begins). # If a vertex ''v'' is impossible to color properly (for any color, ''v'' has a neighbor colored with it), then Bob wins. # If the graph is completely colored, then Alice wins. The game chromatic numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wheel Graph
A wheel is a circular component that is intended to rotate on an axle bearing. The wheel is one of the key components of the wheel and axle which is one of the six simple machines. Wheels, in conjunction with axles, allow heavy objects to be moved easily facilitating movement or transportation while supporting a load, or performing labor in machines. Wheels are also used for other purposes, such as a ship's wheel, steering wheel, potter's wheel, and flywheel. Common examples are found in transport applications. A wheel reduces friction by facilitating motion by rolling together with the use of axles. In order for wheels to rotate, a moment needs to be applied to the wheel about its axis, either by way of gravity or by the application of another external force or torque. Using the wheel, Sumerians invented a device that spins clay as a potter shapes it into the desired object. Terminology The English word ''wheel'' comes from the Old English word , from Proto-Germanic , fro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Star (graph Theory)
In graph theory, a star is the complete bipartite graph a tree with one internal node and leaves (but no internal nodes and leaves when ). Alternatively, some authors define to be the tree of order with maximum diameter 2; in which case a star of has leaves. A star with 3 edges is called a claw. The star is edge-graceful when is even and not when is odd. It is an edge-transitive matchstick graph, and has diameter 2 (when ), girth ∞ (it has no cycles), chromatic index , and chromatic number 2 (when ). Additionally, the star has large automorphism group, namely, the symmetric group on letters. Stars may also be described as the only connected graphs in which at most one vertex has degree greater than one. Relation to other graph families Claws are notable in the definition of claw-free graphs, graphs that do not have any claw as an induced subgraph. They are also one of the exceptional cases of the Whitney graph isomorphism theorem: in general, graphs with isomor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cycle Graph
In graph theory, a cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with vertices is called . The number of vertices in equals the number of edges, and every vertex has degree 2; that is, every vertex has exactly two edges incident with it. Terminology There are many synonyms for "cycle graph". These include simple cycle graph and cyclic graph, although the latter term is less often used, because it can also refer to graphs which are merely not acyclic. Among graph theorists, cycle, polygon, or ''n''-gon are also often used. The term ''n''-cycle is sometimes used in other settings. A cycle with an even number of vertices is called an even cycle; a cycle with an odd number of vertices is called an odd cycle. Properties A cycle graph is: * 2-edge colorable, if and only if it has an even number of vertices * 2-regular * 2-ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Path Graph
In the mathematical field of graph theory, a path graph or linear graph is a graph whose vertices can be listed in the order such that the edges are where . Equivalently, a path with at least two vertices is connected and has two terminal vertices (vertices that have degree 1), while all others (if any) have degree 2. Paths are often important in their role as subgraphs of other graphs, in which case they are called paths in that graph. A path is a particularly simple example of a tree, and in fact the paths are exactly the trees in which no vertex has degree 3 or more. A disjoint union of paths is called a linear forest. Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See, for example, Bondy and Murty (1976), Gibbons (1985), or Diestel (2005). As Dynkin diagrams In algebra, path graphs appear as the Dynkin diagrams of type A. As such, they classify the root system of type A and the Weyl group of ty ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Degeneracy (graph Theory)
In graph theory, a ''k''-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most ''k'': that is, some vertex in the subgraph touches ''k'' or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of ''k'' for which it is ''k''-degenerate. The degeneracy of a graph is a measure of how sparse it is, and is within a constant factor of other sparsity measures such as the arboricity of a graph. Degeneracy is also known as the ''k''-core number, width, and linkage, and is essentially the same as the coloring number or Szekeres–Wilf number (named after ). ''k''-degenerate graphs have also been called ''k''-inductive graphs. The degeneracy of a graph may be computed in linear time by an algorithm that repeatedly removes minimum-degree vertices. The connected components that are left after all vertices of degree less than ''k'' have been (repeatedly) removed are called the ''k''-cores of the graph and the degeneracy of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




(a,b)-decomposability
In graph theory, the (''a'', ''b'')-decomposition of an undirected graph is a partition of its edges into ''a'' + 1 sets, each one of them inducing a forest, except one which induces a graph with maximum degree ''b''. If this graph is also a forest, then we call this a F(''a'', ''b'')-decomposition. A graph with arboricity ''a'' is (''a'', 0)-decomposable. Every (''a'', ''0'')-decomposition or (''a'', ''1'')-decomposition is a F(''a'', ''0'')-decomposition or a F(''a'', ''1'')-decomposition respectively. Graph classes * Every planar graph is F(2, 4)-decomposable. * Every planar graph G with girth at least g is ** F(2, 0)-decomposable if g \ge 4.Implied by . ** (1, 4)-decomposable if g \ge 5. ** F(1, 2)-decomposable if g \ge 6. ** F(1, 1)-decomposable if g \ge 8, or if every cycle of G is either a triangle or a cycle with at least 8 edges not belonging to a triangle. ** (1, 5)-decomposable if G ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Incidence (graph)
::''An incidence graph is a Levi graph.'' In graph theory, a vertex is incident with an edge Edge or EDGE may refer to: Technology Computing * Edge computing, a network load-balancing system * Edge device, an entry point to a computer network * Adobe Edge, a graphical development application * Microsoft Edge, a web browser developed ... if the vertex is one of the two vertices the edge connects. An incidence is a pair (u, e) where u is a vertex and e is an edge incident with u Two distinct incidences (u,e) and (v,f) are adjacent if either the vertices u,v or the edges e,f are adjacent, which is the case if one of the following holds: *u = v and e \neq f, *e = f and u \neq v, or *e = \, f = \{v,w\}, and u \neq w. An incidence coloring of a graph G is an assignment of a color to each incidence of G in such a way that adjacent incidences get distinct colors. It is equivalent to a strong edge coloring of the graph obtained by subdivising each edge of G once. Reference ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Incidence Coloring
In graph theory, the act of coloring generally implies the assignment of labels to vertices, edges or faces in a graph. The incidence coloring is a special graph labeling where each incidence of an edge with a vertex is assigned a color under certain constraints. Definitions Below ''G'' denotes a simple graph with non-empty vertex set (non-empty) ''V''(''G''), edge set ''E''(''G'') and maximum degree Δ(''G''). Definition. An incidence is defined as a pair (''v'', ''e'') where v\in V(G) is an end point of e\in E(G). In simple words, one says that vertex ''v'' is incident to edge ''e''. Two incidences (''v'', ''e'') and (''u'', ''f'') are said to be adjacent or neighboring if one of the following holds: * ''v'' = ''u'', ''e'' ≠ ''f'' * ''e'' = ''f'', ''v'' ≠ ''u'' * ''e'' = , ''f'' = and ''v'' ≠ ''w''. Definition. Let ''I''(''G'') be the set of all incidences of ''G''. An incidence coloring of ''G'' is a function c: I(G)\to\N that takes distinct values on adjacent i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Caterpillar Tree
In graph theory, a caterpillar or caterpillar tree is a tree in which all the vertices are within distance 1 of a central path. Caterpillars were first studied in a series of papers by Harary and Schwenk. The name was suggested by Arthur Hobbs. As colorfully write, "A caterpillar is a tree which metamorphoses into a path when its cocoon of endpoints is removed.". Equivalent characterizations The following characterizations all describe the caterpillar trees: *They are the trees for which removing the leaves and incident edges produces a path graph. *They are the trees in which there exists a path that contains every vertex of degree two or more. *They are the trees in which every vertex of degree at least three has at most two non-leaf neighbors. *They are the trees that do not contain as a subgraph the graph formed by replacing every edge in the star graph ''K''1,3 by a path of length two. *They are the connected graphs that can be drawn with their vertices on two parallel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wheel Graph
A wheel is a circular component that is intended to rotate on an axle bearing. The wheel is one of the key components of the wheel and axle which is one of the six simple machines. Wheels, in conjunction with axles, allow heavy objects to be moved easily facilitating movement or transportation while supporting a load, or performing labor in machines. Wheels are also used for other purposes, such as a ship's wheel, steering wheel, potter's wheel, and flywheel. Common examples are found in transport applications. A wheel reduces friction by facilitating motion by rolling together with the use of axles. In order for wheels to rotate, a moment needs to be applied to the wheel about its axis, either by way of gravity or by the application of another external force or torque. Using the wheel, Sumerians invented a device that spins clay as a potter shapes it into the desired object. Terminology The English word ''wheel'' comes from the Old English word , from Proto-Germanic , fro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line Graph
In the mathematical discipline of graph theory, the line graph of an undirected graph is another graph that represents the adjacencies between edges of . is constructed in the following way: for each edge in , make a vertex in ; for every two edges in that have a vertex in common, make an edge between their corresponding vertices in . The name line graph comes from a paper by although both and used the construction before this. Other terms used for the line graph include the covering graph, the derivative, the edge-to-vertex dual, the conjugate, the representative graph, and the θ-obrazom, as well as the edge graph, the interchange graph, the adjoint graph, and the derived graph., p. 71. proved that with one exceptional case the structure of a connected graph can be recovered completely from its line graph. Many other properties of line graphs follow by translating the properties of the underlying graph from vertices into edges, and by Whitney's theorem the same t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]