HOME
*





Glossary Of Tensor Theory
This is a glossary of tensor theory. For expositions of tensor theory from different points of view, see: * Tensor * Tensor (intrinsic definition) * Application of tensor theory in engineering science For some history of the abstract theory see also multilinear algebra. Classical notation ; Ricci calculus :The earliest foundation of tensor theory – tensor index notation. ; Order of a tensor :The components of a tensor with respect to a basis is an indexed array. The ''order'' of a tensor is the number of indices needed. Some texts may refer to the tensor order using the term ''degree'' or ''rank''. ; Rank of a tensor :The rank of a tensor is the minimum number of rank-one tensor that must be summed to obtain the tensor. A rank-one tensor may be defined as expressible as the outer product of the number of nonzero vectors needed to obtain the correct order. ;Dyadic tensor :A ''dyadic'' tensor is a tensor of order two, and may be represented as a square matrix. In contrast, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor Theory
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system. Tensors have become important in physics because they provide a concise mathematical framework for formulating and solving physics problems in areas such as mechanics (stress, elasticity, fluid mechanics, moment of inertia, ...), electrodynamics (electromagnetic tensor, Maxwell tensor, permittivity, magnetic susceptibility, ...), general relativity ( stress–energy tensor, cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluid Mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids ( liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical and biomedical engineering, geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion. It is a branch of continuum mechanics, a subject which models matter without using the information that it is made out of atoms; that is, it models matter from a ''macroscopic'' viewpoint rather than from ''microscopic''. Fluid mechanics, especially fluid dynamics, is an active field of research, typically mathematically complex. Many problems are partly or wholly unsolved and are best addressed by numerical methods, typically using computers. A modern discipline, called computational fluid dynamics (CFD), is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Operation
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary operation ''on a set'' is a binary operation whose two domains and the codomain are the same set. Examples include the familiar arithmetic operations of addition, subtraction, and multiplication. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups. An operation of arity two that involves several sets is sometimes also called a ''binary operation''. For example, scalar multiplication of vector spaces takes a scalar and a vector to produce a vector, and scalar product takes two vectors to produce a scalar. Such binary operations may be called simply binary functions. Binary operations are the keystone of most algebraic structures that are studie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiple Cross Products
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors. The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product. Scalar triple product The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two. Geometric interpretation Geometrically, the scalar triple product : \mathbf\cdot(\mathbf\times \mathbf) is the (signed) volume of the parallelepiped defined by the three vectors given. Here, the parentheses may be omitted without causing ambiguity, since the dot product cannot be evaluated first. If it were, it would leave the cross product of a scalar and a vector, which is not defined. Properties * The scalar triple product is unchanged under a circular shift of its three operands (a, b, c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antisymmetric Tensor
In mathematics and theoretical physics, a tensor is antisymmetric on (or with respect to) an index subset if it alternates sign (+/−) when any two indices of the subset are interchanged. section §7. The index subset must generally either be all ''covariant'' or all ''contravariant''. For example, T_ = -T_ = T_ = -T_ = T_ = -T_ holds when the tensor is antisymmetric with respect to its first three indices. If a tensor changes sign under exchange of ''each'' pair of its indices, then the tensor is completely (or totally) antisymmetric. A completely antisymmetric covariant tensor field of order k may be referred to as a differential k-form, and a completely antisymmetric contravariant tensor field may be referred to as a k-vector field. Antisymmetric and symmetric tensors A tensor A that is antisymmetric on indices i and j has the property that the contraction with a tensor B that is symmetric on indices i and j is identically 0. For a general tensor U with components U_ and a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Symmetric Tensor
In mathematics, a symmetric tensor is a tensor that is invariant under a permutation of its vector arguments: :T(v_1,v_2,\ldots,v_r) = T(v_,v_,\ldots,v_) for every permutation ''σ'' of the symbols Alternatively, a symmetric tensor of order ''r'' represented in coordinates as a quantity with ''r'' indices satisfies :T_ = T_. The space of symmetric tensors of order ''r'' on a finite-dimensional vector space ''V'' is naturally isomorphic to the dual of the space of homogeneous polynomials of degree ''r'' on ''V''. Over fields of characteristic zero, the graded vector space of all symmetric tensors can be naturally identified with the symmetric algebra on ''V''. A related concept is that of the antisymmetric tensor or alternating form. Symmetric tensors occur widely in engineering, physics and mathematics. Definition Let ''V'' be a vector space and :T\in V^ a tensor of order ''k''. Then ''T'' is a symmetric tensor if :\tau_\sigma T = T\, for the braiding maps associated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Raising And Lowering Indices
In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions. Vectors, covectors and the metric Mathematical formulation Mathematically vectors are elements of a vector space V over a field K, and for use in physics V is usually defined with K=\mathbb or \mathbb. Concretely, if the dimension n=\text(V) of V is finite, then, after making a choice of basis, we can view such vector spaces as \mathbb^n or \mathbb^n. The dual space is the space of linear functionals mapping V\rightarrow K. Concretely, in matrix notation these can be thought of as row vectors, which give a number when applied to column vectors. We denote this by V^*:= \text(V,K), so that \alpha \in V^* is a linear map \alpha:V\rightarrow K. Then under a choice of basis \, we can view vectors v\in V as an K^n vector with components v^i (vectors are taken by convention to hav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tensor Contraction
In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the natural pairing of a finite-dimensional vector space and its dual. In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression. The contraction of a single mixed tensor occurs when a pair of literal indices (one a subscript, the other a superscript) of the tensor are set equal to each other and summed over. In Einstein notation this summation is built into the notation. The result is another tensor with order reduced by 2. Tensor contraction can be seen as a generalization of the trace. Abstract formulation Let ''V'' be a vector space over a field ''k''. The core of the contraction operation, and the simplest case, is the natural pairing of ''V'' with its dual vector space ''V''∗. The pairing is the linear transformation from the ten ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Tensor
In geometry and linear algebra, a Cartesian tensor uses an orthonormal basis to represent a tensor in a Euclidean space in the form of components. Converting a tensor's components from one such basis to another is through an orthogonal transformation. The most familiar coordinate systems are the two-dimensional and three-dimensional Cartesian coordinate systems. Cartesian tensors may be used with any Euclidean space, or more technically, any finite-dimensional vector space over the field of real numbers that has an inner product. Use of Cartesian tensors occurs in physics and engineering, such as with the Cauchy stress tensor and the moment of inertia tensor in rigid body dynamics. Sometimes general curvilinear coordinates are convenient, as in high-deformation continuum mechanics, or even necessary, as in general relativity. While orthonormal bases may be found for some such coordinate systems (e.g. tangent to spherical coordinates), Cartesian tensors may provide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tensor Density
In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another (see tensor field), except that it is additionally multiplied or ''weighted'' by a power ''W'' of the Jacobian determinant of the coordinate transition function or its absolute value. A tensor density with a single index is called a vector density. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight ''W'' are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle. Motivation In physics and related fields, it is often useful to work with the components of an algebraic object rather than the object itself. An example would be decomposing a vector into a sum of basis vec ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metric Tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point of is a bilinear form defined on the tangent space at (that is, a bilinear function that maps pairs of tangent vectors to real numbers), and a metric tensor on consists of a metric tensor at each point of that varies smoothly with . A metric tensor is ''positive-definite'' if for every nonzero vector . A manifold equipped with a positive-definite metric tensor is known as a Riemannian manifold. Such a metric tensor can be thought of as specifying ''infinitesimal'' distance on the manifold. On a Riemannian manifold , the length of a smooth curve between two points and can be defined by integration, and the distance between and can be defined ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]