HOME
*





Glossary Of Classical Algebraic Geometry
The terminology of algebraic geometry changed drastically during the twentieth century, with the introduction of the general methods, initiated by David Hilbert and the Italian school of algebraic geometry in the beginning of the century, and later formalized by André Weil, Jean-Pierre Serre and Alexander Grothendieck. Much of the classical terminology, mainly based on case study, was simply abandoned, with the result that books and papers written before this time can be hard to read. This article lists some of this classical terminology, and describes some of the changes in conventions. translates many of the classical terms in algebraic geometry into scheme-theoretic terminology. Other books defining some of the classical terminology include , , , , , . Conventions The change in terminology from around 1948 to 1960 is not the only difficulty in understanding classical algebraic geometry. There was also a lot of background knowledge and assumptions, much of which has now ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century. Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic. Life Early life and edu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Arithmetic Genus
In mathematics, the arithmetic genus of an algebraic variety is one of a few possible generalizations of the genus of an algebraic curve or Riemann surface. Projective varieties Let ''X'' be a projective scheme of dimension ''r'' over a field ''k'', the ''arithmetic genus'' p_a of ''X'' is defined asp_a(X)=(-1)^r (\chi(\mathcal_X)-1).Here \chi(\mathcal_X) is the Euler characteristic of the structure sheaf \mathcal_X. Complex projective manifolds The arithmetic genus of a complex projective manifold of dimension ''n'' can be defined as a combination of Hodge numbers, namely :p_a=\sum_^ (-1)^j h^. When ''n=1'', the formula becomes p_a=h^. According to the Hodge theorem, h^=h^. Consequently h^=h^1(X)/2=g, where ''g'' is the usual (topological) meaning of genus of a surface, so the definitions are compatible. When ''X'' is a compact Kähler manifold, applying ''h''''p'',''q'' = ''h''''q'',''p'' recovers the earlier definition for projective varieties. Kähler manifolds By u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Caustic (mathematics)
In differential geometry, a caustic is the envelope of rays either reflected or refracted by a manifold. It is related to the concept of caustics in geometric optics. The ray's source may be a point (called the radiant) or parallel rays from a point at infinity, in which case a direction vector of the rays must be specified. More generally, especially as applied to symplectic geometry and singularity theory, a caustic is the critical value set of a Lagrangian mapping where is a Lagrangian immersion of a Lagrangian submanifold ''L'' into a symplectic manifold ''M'', and is a Lagrangian fibration of the symplectic manifold ''M''. The caustic is a subset of the Lagrangian fibration's base space ''B''. Explanation Concentration of light, especially sunlight, can burn. The word ''caustic'', in fact, comes from the Greek καυστός, burnt, via the Latin ''causticus'', burning. A common situation where caustics are visible is when light shines on a drinking glass. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Catalecticant
In mathematical invariant theory, the catalecticant of a form of even degree is a polynomial in its coefficients that vanishes when the form is a sum of an unusually small number of powers of linear forms. It was introduced by ; see . The word catalectic refers to an incomplete line of verse, lacking a syllable at the end or ending with an incomplete foot. Binary forms The catalecticant of a binary form of degree 2''n'' is a polynomial in its coefficients that vanishes when the binary form is a sum of at most ''n'' powers of linear forms . The catalecticant of a binary form can be given as the determinant of a catalecticant matrix , also called a Hankel matrix, that is a square matrix In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Square matrices are often ... with constant (positive sloping) skew-diag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canonical Bundle
In mathematics, the canonical bundle of a non-singular algebraic variety V of dimension n over a field is the line bundle \,\!\Omega^n = \omega, which is the ''n''th exterior power of the cotangent bundle Ω on ''V''. Over the complex numbers, it is the determinant bundle of holomorphic ''n''-forms on ''V''. This is the dualising object for Serre duality on ''V''. It may equally well be considered as an invertible sheaf. The canonical class is the divisor class of a Cartier divisor ''K'' on ''V'' giving rise to the canonical bundle — it is an equivalence class for linear equivalence on ''V'', and any divisor in it may be called a canonical divisor. An anticanonical divisor is any divisor −''K'' with ''K'' canonical. The anticanonical bundle is the corresponding inverse bundle ω−1. When the anticanonical bundle of V is ample, V is called a Fano variety. The adjunction formula Suppose that ''X'' is a smooth variety and that ''D'' is a smooth divisor on ''X'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bitangent
In geometry, a bitangent to a curve is a line that touches in two distinct points and and that has the same direction as at these points. That is, is a tangent line at and at . Bitangents of algebraic curves In general, an algebraic curve will have infinitely many secant lines, but only finitely many bitangents. Bézout's theorem implies that an algebraic plane curve with a bitangent must have degree at least 4. The case of the 28 bitangents of a quartic was a celebrated piece of geometry of the nineteenth century, a relationship being shown to the 27 lines on the cubic surface. Bitangents of polygons The four bitangents of two disjoint convex polygons may be found efficiently by an algorithm based on binary search in which one maintains a binary search pointer into the lists of edges of each polygon and moves one of the pointers left or right at each steps depending on where the tangent lines to the edges at the two pointers cross each other. This bitangent calculation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Biregular Map
In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and they are isomorphisms in the category of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the weaker condition of a rational map and birational maps are frequently used as well. Definition If ''X'' and ''Y'' are closed subvarieties of \mathbb^n and \mathbb^m (so they are affine varieties), then a regular map f\colon X\to Y is the restriction of a polynomial map \mathbb^n\to \mathbb^m. Explicitly, it has the form: :f = (f_1, \dots, f_m) where the f_is are in the coordinate ring of ''X'': :k = k _1, \dots, x_nI, where ''I'' is the ideal defining ''X'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birational Map
In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational functions rather than polynomials; the map may fail to be defined where the rational functions have poles. Birational maps Rational maps A rational map from one variety (understood to be irreducible) X to another variety Y, written as a dashed arrow , is defined as a morphism from a nonempty open subset U \subset X to Y. By definition of the Zariski topology used in algebraic geometry, a nonempty open subset U is always dense in X, in fact the complement of a lower-dimensional subset. Concretely, a rational map can be written in coordinates using rational functions. Birational maps A birational map from ''X'' to ''Y'' is a rational map such that there is a rational map inverse to ''f''. A birational map induces an isomorphism from a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Form
Binary form is a musical form in 2 related sections, both of which are usually repeated. Binary is also a structure used to choreograph dance. In music this is usually performed as A-A-B-B. Binary form was popular during the Baroque period, often used to structure movements of keyboard sonatas. It was also used for short, one-movement works. Around the middle of the 18th century, the form largely fell from use as the principal design of entire movements as sonata form and organic development gained prominence. When it is found in later works, it usually takes the form of the theme in a set of variations, or the Minuet, Scherzo, or Trio sections of a "minuet and trio" or "scherzo and trio" movement in a sonata, symphony, etc. Many larger forms incorporate binary structures, and many more complicated forms (such as the 18th-century sonata form) share certain characteristics with binary form. Structure A typical example of a piece in binary form has two large sections of roughly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plurigenus
In mathematics, the pluricanonical ring of an algebraic variety ''V'' (which is non-singular), or of a complex manifold, is the graded ring :R(V,K)=R(V,K_V) \, of sections of powers of the canonical bundle ''K''. Its ''n''th graded component (for n\geq 0) is: :R_n := H^0(V, K^n),\ that is, the space of sections of the ''n''-th tensor product ''K''''n'' of the canonical bundle ''K''. The 0th graded component R_0 is sections of the trivial bundle, and is one-dimensional as ''V'' is projective. The projective variety defined by this graded ring is called the canonical model of ''V'', and the dimension of the canonical model is called the Kodaira dimension of ''V''. One can define an analogous ring for any line bundle ''L'' over ''V''; the analogous dimension is called the Iitaka dimension. A line bundle is called big if the Iitaka dimension equals the dimension of the variety. Properties Birational invariance The canonical ring and therefore likewise the Kodaira dimension is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hyperelliptic Surface
In mathematics, a hyperelliptic surface, or bi-elliptic surface, is a surface whose Albanese morphism is an elliptic fibration. Any such surface can be written as the quotient of a product of two elliptic curves by a finite abelian group. Hyperelliptic surfaces form one of the classes of surfaces of Kodaira dimension 0 in the Enriques–Kodaira classification. Invariants The Kodaira dimension is 0. Hodge diamond: Classification Any hyperelliptic surface is a quotient (''E''×''F'')/''G'', where ''E'' = C/Λ and ''F'' are elliptic curves, and ''G'' is a subgroup of ''F'' ( acting on ''F'' by translations). There are seven families of hyperelliptic surfaces as in the following table. Here ω is a primitive cube root of 1 and i is a primitive 4th root of 1. Quasi hyperelliptic surfaces A quasi-hyperelliptic surface is a surface whose canonical divisor is numerically equivalent to zero, the Albanese mapping maps to an elliptic curve, and all its fibers are rational with a cus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bicorn
In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation y^2 \left(a^2 - x^2\right) = \left(x^2 + 2ay - a^2\right)^2. It has two cusps and is symmetric about the y-axis. History In 1864, James Joseph Sylvester studied the curve y^4 - xy^3 - 8xy^2 + 36x^2y+ 16x^2 -27x^3 = 0 in connection with the classification of quintic equations; he named the curve a bicorn because it has two cusps. This curve was further studied by Arthur Cayley in 1867. Properties The bicorn is a plane algebraic curve of degree four and genus zero. It has two cusp singularities in the real plane, and a double point in the complex projective plane at x=0, z=0. If we move x=0 and z=0 to the origin substituting and perform an imaginary rotation on x bu substituting ix/z for x and 1/z for y in the bicorn curve, we obtain \left(x^2 - 2az + a^2 z^2\right)^2 = x^2 + a^2 z^2. This curve, a limaçon, has an ordinary double point ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]