Generalized Appell Polynomials
   HOME
*





Generalized Appell Polynomials
In mathematics, a polynomial sequence \ has a generalized Appell representation if the generating function for the polynomials takes on a certain form: :K(z,w) = A(w)\Psi(zg(w)) = \sum_^\infty p_n(z) w^n where the generating function or kernel K(z,w) is composed of the series :A(w)= \sum_^\infty a_n w^n \quad with a_0 \ne 0 and :\Psi(t)= \sum_^\infty \Psi_n t^n \quad and all \Psi_n \ne 0 and :g(w)= \sum_^\infty g_n w^n \quad with g_1 \ne 0. Given the above, it is not hard to show that p_n(z) is a polynomial of degree n. Boas–Buck polynomials are a slightly more general class of polynomials. Special cases * The choice of g(w)=w gives the class of Brenke polynomials. * The choice of \Psi(t)=e^t results in the Sheffer sequence of polynomials, which include the general difference polynomials, such as the Newton polynomials. * The combined choice of g(w)=w and \Psi(t)=e^t gives the Appell sequence of polynomials. Explicit representation The generalized Appell polynomials ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Sequence
In mathematics, a polynomial sequence is a sequence of polynomials indexed by the nonnegative integers 0, 1, 2, 3, ..., in which each index is equal to the degree of the corresponding polynomial. Polynomial sequences are a topic of interest in enumerative combinatorics and algebraic combinatorics, as well as applied mathematics. Examples Some polynomial sequences arise in physics and approximation theory as the solutions of certain ordinary differential equations: * Laguerre polynomials * Chebyshev polynomials * Legendre polynomials * Jacobi polynomials Others come from statistics: * Hermite polynomials Many are studied in algebra and combinatorics: * Monomials * Rising factorials * Falling factorials * All-one polynomials * Abel polynomials * Bell polynomials * Bernoulli polynomials * Cyclotomic polynomials * Dickson polynomials * Fibonacci polynomials * Lagrange polynomials * Lucas polynomials * Spread polynomials * Touchard polynomials * Rook polynomials Classes of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generating Function
In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the ''formal'' power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers. There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series; definitions and examples are given below. Every sequence in principle has a generating function of each type (except ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kernel (category Theory)
In category theory and its applications to other branches of mathematics, kernels are a generalization of the kernels of group homomorphisms, the kernels of module homomorphisms and certain other kernels from algebra. Intuitively, the kernel of the morphism ''f'' : ''X'' → ''Y'' is the "most general" morphism ''k'' : ''K'' → ''X'' that yields zero when composed with (followed by) ''f''. Note that kernel pairs and difference kernels (also known as binary equalisers) sometimes go by the name "kernel"; while related, these aren't quite the same thing and are not discussed in this article. Definition Let C be a category. In order to define a kernel in the general category-theoretical sense, C needs to have zero morphisms. In that case, if ''f'' : ''X'' → ''Y'' is an arbitrary morphism in C, then a kernel of ''f'' is an equaliser of ''f'' and the zero morphism from ''X'' to ''Y''. In symbols: :ker(''f'') = eq(''f'', 0''XY'') To be more explicit, the following universal pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Degree Of A Polynomial
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer. For a univariate polynomial, the degree of the polynomial is simply the highest exponent occurring in the polynomial. The term order has been used as a synonym of ''degree'' but, nowadays, may refer to several other concepts (see order of a polynomial (other)). For example, the polynomial 7x^2y^3 + 4x - 9, which can also be written as 7x^2y^3 + 4x^1y^0 - 9x^0y^0, has three terms. The first term has a degree of 5 (the sum of the powers 2 and 3), the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial has a degree of 5, which is the highest degree of any term. To determine the degree of a polynomial that is not in standard form, such as (x+1)^2 - (x-1)^2, one can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Boas–Buck Polynomials
In mathematics, Boas–Buck polynomials are sequences of polynomials \Phi_n^(z) defined from analytic functions B and C by generating functions of the form :\displaystyle C(zt^r B(t))=\sum_\Phi_n^(z)t^n. The case r=1, sometimes called generalized Appell polynomials In mathematics, a polynomial sequence \ has a generalized Appell representation if the generating function for the polynomials takes on a certain form: :K(z,w) = A(w)\Psi(zg(w)) = \sum_^\infty p_n(z) w^n where the generating function or kernel K( ..., was studied by . References * Polynomials {{mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Brenke Polynomials
William Charles Brenke (April 12, 1874, Berlin – 1964) was an American mathematician who introduced Brenke polynomials and wrote several undergraduate textbooks. He received his PhD in mathematics at Harvard under Maxime Bôcher. Brenke taught at the University of Nebraska-Lincoln A university () is an institution of higher (or tertiary) education and research which awards academic degrees in several academic disciplines. Universities typically offer both undergraduate and postgraduate programs. In the United States, t ... mathematics department from 1908 to 1944 and was chair of the department from 1934 to 1944. He retired in 1943 but his successor, Ralph Hull, was put on official leave to do war work and returned from leave in 1945. Publications * * References External links * 1874 births 1964 deaths 20th-century American mathematicians Harvard Graduate School of Arts and Sciences alumni University of Nebraska–Lincoln faculty {{US-mathematician-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheffer Sequence
In mathematics, a Sheffer sequence or poweroid is a polynomial sequence, i.e., a sequence of polynomials in which the index of each polynomial equals its degree, satisfying conditions related to the umbral calculus in combinatorics. They are named for Isador M. Sheffer. Definition Fix a polynomial sequence (''p''''n''). Define a linear operator ''Q'' on polynomials in ''x'' by :Qp_n(x) = np_(x)\, . This determines ''Q'' on all polynomials. The polynomial sequence ''p''''n'' is a ''Sheffer sequence'' if the linear operator ''Q'' just defined is ''shift-equivariant''; such a ''Q'' is then a delta operator. Here, we define a linear operator ''Q'' on polynomials to be ''shift-equivariant'' if, whenever ''f''(''x'') = ''g''(''x'' + ''a'') = ''T''''a'' ''g''(''x'') is a "shift" of ''g''(''x''), then (''Qf'')(''x'') = (''Qg'')(''x'' + ''a''); i.e., ''Q'' commutes with every shift operator: ''T''''a''''Q'' = ''QT''''a''. Properties The set of all Sheffer sequences is a group un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Difference Polynomials
In mathematics, in the area of complex analysis, the general difference polynomials are a polynomial sequence, a certain subclass of the Sheffer polynomials, which include the Newton polynomials, Selberg's polynomials, and the Stirling interpolation polynomials as special cases. Definition The general difference polynomial sequence is given by :p_n(z)=\frac where is the binomial coefficient. For \beta=0, the generated polynomials p_n(z) are the Newton polynomials :p_n(z)= = \frac. The case of \beta=1 generates Selberg's polynomials, and the case of \beta=-1/2 generates Stirling's interpolation polynomials. Moving differences Given an analytic function f(z), define the moving difference of ''f'' as :\mathcal_n(f) = \Delta^n f (\beta n) where \Delta is the forward difference operator. Then, provided that ''f'' obeys certain summability conditions, then it may be represented in terms of these polynomials as :f(z)=\sum_^\infty p_n(z) \mathcal_n(f). The conditions for summa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Newton Polynomials
In the mathematical field of numerical analysis, a Newton polynomial, named after its inventor Isaac Newton, is an interpolation polynomial for a given set of data points. The Newton polynomial is sometimes called Newton's divided differences interpolation polynomial because the coefficients of the polynomial are calculated using Newton's divided differences method. Definition Given a set of ''k'' + 1 data points :(x_0, y_0),\ldots,(x_j, y_j),\ldots,(x_k, y_k) where no two ''x''''j'' are the same, the Newton interpolation polynomial is a linear combination of Newton basis polynomials :N(x) := \sum_^ a_ n_(x) with the Newton basis polynomials defined as :n_j(x) := \prod_^ (x - x_i) for ''j'' > 0 and n_0(x) \equiv 1. The coefficients are defined as :a_j := _0,\ldots,y_j/math> where : _0,\ldots,y_j/math> is the notation for divided differences. Thus the Newton polynomial can be written as :N(x) = _0+ _0,y_1x-x_0) + \cdots + _0,\ldots,y_kx-x_0)(x-x_1)\cdots(x ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Appell Sequence
In mathematics, an Appell sequence, named after Paul Émile Appell, is any polynomial sequence \_ satisfying the identity :\frac p_n(x) = np_(x), and in which p_0(x) is a non-zero constant. Among the most notable Appell sequences besides the trivial example \ are the Hermite polynomials, the Bernoulli polynomials, and the Euler polynomials. Every Appell sequence is a Sheffer sequence, but most Sheffer sequences are not Appell sequences. Appell sequences have a probabilistic interpretation as systems of moments. Equivalent characterizations of Appell sequences The following conditions on polynomial sequences can easily be seen to be equivalent: * For n = 1, 2, 3,\ldots, ::\frac p_n(x) = n p_(x) :and p_0(x) is a non-zero constant; * For some sequence \_^ of scalars with c_0 \neq 0, ::p_n(x) = \sum_^n \binom c_k x^; * For the same sequence of scalars, ::p_n(x) = \left(\sum_^\infty \frac D^k\right) x^n, :where ::D = \frac; * For n=0,1,2,\ldots, ::p_n(x+y) = \sum_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]