Gauge Covariant Derivative
   HOME
*





Gauge Covariant Derivative
The gauge covariant derivative is a variation of the covariant derivative used in general relativity, quantum field theory and fluid dynamics. If a theory has gauge transformations, it means that some physical properties of certain equations are preserved under those transformations. Likewise, the gauge covariant derivative is the ordinary derivative modified in such a way as to make it behave like a true vector operator, so that equations written using the covariant derivative preserve their physical properties under gauge transformations. Overview There are many ways to understand the gauge covariant derivative. The approach taken in this article is based on the historically traditional notation used in many physics textbooks. Another approach is to understand the gauge covariant derivative as a kind of connection, and more specifically, an affine connection.Alexandre Guay, Geometrical aspects of local gauge symmetry' (2004) The affine connection is interesting because it does ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Covariant Derivative
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component (dependent on the embedding) and the intrinsic covariant derivative component. The name is motivated by the importance of changes of coordinate in physics: the covariant derivative transforms covariantly under a general coordinate transformation, that is, linearly via the Jacobia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lorentz Group
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry: * The kinematical laws of special relativity * Maxwell's field equations in the theory of electromagnetism * The Dirac equation in the theory of the electron * The Standard Model of particle physics The Lorentz group expresses the fundamental symmetry of space and time of all known fundamental laws of nature. In small enough regions of spacetime where gravitational variances are negligible, physical laws are Lorentz invariant in the same manner as special relativity. Basic properties The Lorentz group is a subgroup of the Poincaré group—the group of all isometries of Minkowski spacetime. Lorentz transformations are, precisely, iso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Principal Bundle
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equipped with # An action of G on P, analogous to (x, g)h = (x, gh) for a product space. # A projection onto X. For a product space, this is just the projection onto the first factor, (x,g) \mapsto x. Unlike a product space, principal bundles lack a preferred choice of identity cross-section; they have no preferred analog of (x,e). Likewise, there is not generally a projection onto G generalizing the projection onto the second factor, X \times G \to G that exists for the Cartesian product. They may also have a complicated topology that prevents them from being realized as a product space even if a number of arbitrary choices are made to try to define such a structure by defining it on smaller pieces of the space. A common example of a principal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Associated Bundle
In mathematics, the theory of fiber bundles with a structure group G (a topological group) allows an operation of creating an associated bundle, in which the typical fiber of a bundle changes from F_1 to F_2, which are both topological spaces with a group action of G. For a fiber bundle ''F'' with structure group ''G'', the transition functions of the fiber (i.e., the cocycle) in an overlap of two coordinate systems ''U''α and ''U''β are given as a ''G''-valued function ''g''αβ on ''U''α∩''U''β. One may then construct a fiber bundle ''F''′ as a new fiber bundle having the same transition functions, but possibly a different fiber. An example A simple case comes with the Möbius strip, for which G is the cyclic group of order 2, \mathbb_2. We can take as F any of: the real number line \mathbb, the interval 1,\ 1/math>, the real number line less the point 0, or the two-point set \. The action of G on these (the non-identity element acting as x\ \rightarrow\ -x in each ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Section (fiber Bundle)
In the mathematical field of topology, a section (or cross section) of a fiber bundle E is a continuous right inverse of the projection function \pi. In other words, if E is a fiber bundle over a base space, B: : \pi \colon E \to B then a section of that fiber bundle is a continuous map, : \sigma \colon B \to E such that : \pi(\sigma(x)) = x for all x \in B . A section is an abstract characterization of what it means to be a graph. The graph of a function g\colon B \to Y can be identified with a function taking its values in the Cartesian product E = B \times Y , of B and Y : :\sigma\colon B\to E, \quad \sigma(x) = (x,g(x)) \in E. Let \pi\colon E \to B be the projection onto the first factor: \pi(x,y) = x . Then a graph is any function \sigma for which \pi(\sigma(x)) = x . The language of fibre bundles allows this notion of a section to be generalized to the case when E is not necessarily a Cartesian product. If \pi\colon E \to B is a fibre bundle, then a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exterior Covariant Derivative
In the mathematical field of differential geometry, the exterior covariant derivative is an extension of the notion of exterior derivative to the setting of a differentiable principal bundle or vector bundle with a connection. Definition Let ''G'' be a Lie group and be a principal ''G''-bundle on a smooth manifold ''M''. Suppose there is a connection on ''P''; this yields a natural direct sum decomposition T_u P = H_u \oplus V_u of each tangent space into the horizontal and vertical subspaces. Let h: T_u P \to H_u be the projection to the horizontal subspace. If ''ϕ'' is a ''k''-form on ''P'' with values in a vector space ''V'', then its exterior covariant derivative ''Dϕ'' is a form defined by :D\phi(v_0, v_1,\dots, v_k)= d \phi(h v_0 ,h v_1,\dots, h v_k) where ''v''''i'' are tangent vectors to ''P'' at ''u''. Suppose that is a representation of ''G'' on a vector space ''V''. If ''ϕ'' is equivariant in the sense that :R_g^* \phi = \rho(g)^\phi where R_g(u) = ug, then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SU(3)
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case. The group operation is matrix multiplication. The special unitary group is a normal subgroup of the unitary group , consisting of all unitary matrices. As a compact classical group, is the group that preserves the standard inner product on \mathbb^n. It is itself a subgroup of the general linear group, \operatorname(n) \subset \operatorname(n) \subset \operatorname(n, \mathbb ). The groups find wide application in the Standard Model of particle physics, especially in the electroweak interaction and in quantum chromodynamics. The groups are important in quantum computing, as they represent the possible quantum logic gate operations in a quantum circuit with n qubits and thus 2^n basis states. (Alternatively, the more general ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SU(2)
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case. The group operation is matrix multiplication. The special unitary group is a normal subgroup of the unitary group , consisting of all unitary matrices. As a compact classical group, is the group that preserves the standard inner product on \mathbb^n. It is itself a subgroup of the general linear group, \operatorname(n) \subset \operatorname(n) \subset \operatorname(n, \mathbb ). The groups find wide application in the Standard Model of particle physics, especially in the electroweak interaction and in quantum chromodynamics. The groups are important in quantum computing, as they represent the possible quantum logic gate operations in a quantum circuit with n qubits and thus 2^n basis states. (Alternatively, the more genera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


U(1)
In mathematics, the circle group, denoted by \mathbb T or \mathbb S^1, is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers. \mathbb T = \. The circle group forms a subgroup of \mathbb C^\times, the multiplicative group of all nonzero complex numbers. Since \mathbb C^\times is abelian, it follows that \mathbb T is as well. A unit complex number in the circle group represents a rotation of the complex plane about the origin and can be parametrized by the angle measure \theta: \theta \mapsto z = e^ = \cos\theta + i\sin\theta. This is the exponential map for the circle group. The circle group plays a central role in Pontryagin duality and in the theory of Lie groups. The notation \mathbb T for the circle group stems from the fact that, with the standard topology (see below), the circle group is a 1-torus. More generally, \mathbb T^n (the direct product of \mathbb T with it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Standard Model
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy. Although the Standard Model is believed to be theoretically self-consistent and has demonstrated huge successes in providing experimental predictions, it leaves some physics beyond the standard m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lie Group
In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (division), or equivalently, the concept of addition and the taking of inverses (subtraction). Combining these two ideas, one obtains a continuous group where multiplying points and their inverses are continuous. If the multiplication and taking of inverses are smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the rotational symmetry in three dimensions (given by the special orthogonal group \text(3)). Lie groups are widely used in many parts of modern mathematics and physics. Lie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gravitation (book)
''Gravitation'' is a widely adopted textbook on Albert Einstein's general theory of relativity, written by Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. It was originally published by W. H. Freeman and Company in 1973 and reprinted by Princeton University Press in 2017. It is frequently abbreviated ''MTW'' (for its authors' last names). The cover illustration, drawn by Kenneth Gwin, is a line drawing of an apple with cuts in the skin to show the geodesics on its surface. The book contains 10 parts and 44 chapters, each beginning with a quotation. The bibliography has a long list of original sources and other notable books in the field. While this may not be considered the best introductory text because its coverage may overwhelm a newcomer, and even though parts of it are now out of date, it remains a highly valued reference for advanced graduate students and researchers. Content Subject matter After a brief review of special relativity and flat spacetime, ph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]