Galois Geometry
   HOME
*



picture info

Galois Geometry
Galois geometry (so named after the 19th-century French mathematician Évariste Galois) is the branch of finite geometry that is concerned with algebraic and analytic geometry over a finite field (or ''Galois field''). More narrowly, ''a'' Galois geometry may be defined as a projective space over a finite field. Objects of study include affine and projective spaces over finite fields and various structures that are contained in them. In particular, arcs, ovals, hyperovals, unitals, blocking sets, ovoids, caps, spreads and all finite analogues of structures found in non-finite geometries. Vector spaces defined over finite fields play a significant role, especially in construction methods. Projective spaces over finite fields Notation Although the generic notation of projective geometry is sometimes used, it is more common to denote projective spaces over finite fields by , where is the "geometric" dimension (see below), and is the order of the finite field (or Galois fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fano Plane
In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given coordinates using the finite field with two elements. The standard notation for this plane, as a member of a family of projective spaces, is . Here stands for "projective geometry", the first parameter is the geometric dimension (it is a plane, of dimension 2) and the second parameter is the order (the number of points per line, minus one). The Fano plane is an example of a finite incidence structure, so many of its properties can be established using combinatorial techniques and other tools used in the study of incidence geometries. Since it is a projective space, algebraic techniques can also be effective tools in its study. Homogeneous coordinat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ( ref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plücker Coordinates
In geometry, Plücker coordinates, introduced by Julius Plücker in the 19th century, are a way to assign six homogeneous coordinates to each line in projective 3-space, P3. Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in P3 and points on a quadric in P5 (projective 5-space). A predecessor and special case of Grassmann coordinates (which describe ''k''-dimensional linear subspaces, or ''flats'', in an ''n''-dimensional Euclidean space), Plücker coordinates arise naturally in geometric algebra. They have proved useful for computer graphics, and also can be extended to coordinates for the screws and wrenches in the theory of kinematics used for robot control. Geometric intuition A line L in 3-dimensional Euclidean space is determined by two distinct points that it contains, or by two distinct planes that contain it. Consider the first case, with points x=(x_1,x_2,x_3) and y=(y_1,y_2,y_3). The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Characteristic 0
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their requirements for a ring (see Multiplicative identity and the te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GF(2)
(also denoted \mathbb F_2, or \mathbb Z/2\mathbb Z) is the finite field of two elements (GF is the initialism of ''Galois field'', another name for finite fields). Notations and \mathbb Z_2 may be encountered although they can be confused with the notation of -adic integers. is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively and , as usual. The elements of may be identified with the two possible values of a bit and to the boolean values ''true'' and ''false''. It follows that is fundamental and ubiquitous in computer science and its logical foundations. Definition GF(2) is the unique field with two elements with its additive and multiplicative identities respectively denoted and . Its addition is defined as the usual addition of integers but modulo 2 and corresponds to the table below: If the elements of GF(2) are seen as boolean values, then the addition is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Skew Lines
In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. Two lines that both lie in the same plane must either cross each other or be parallel, so skew lines can exist only in three or more dimensions. Two lines are skew if and only if they are not coplanar. General position If four points are chosen at random uniformly within a unit cube, they will almost surely define a pair of skew lines. After the first three points have been chosen, the fourth point will define a non-skew line if, and only if, it is coplanar with the first three points. However, the plane through the first three points forms a subset of measure zero of the cube, and the probability that the fourth point lies on this plane is zero. If it does not, the lines defined by the points will be skew. Similarly, in three-dimensional space a very small perturbati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kirkman's Schoolgirl Problem
Kirkman's schoolgirl problem is a problem in combinatorics proposed by Rev. Thomas Penyngton Kirkman in 1850 as Query VI in ''The Lady's and Gentleman's Diary'' (pg.48). The problem states: Fifteen young ladies in a school walk out three abreast for seven days in succession: it is required to arrange them daily so that no two shall walk twice abreast. Solutions A solution to this problem is an example of a ''Kirkman triple system'', which is a Steiner triple system having a ''parallelism'', that is, a partition of the blocks of the triple system into parallel classes which are themselves partitions of the points into disjoint blocks. Such Steiner systems that have a parallelism are also called ''resolvable''. There are exactly seven non-isomorphic solutions to the schoolgirl problem, as originally listed by Frank Nelson Cole in ''Kirkman Parades'' in 1922. The seven solutions are summarized in the table below, denoting the 15 girls with the letters A to O. From the numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Harmonic Conjugate
In projective geometry, the harmonic conjugate point of an ordered triple of points on the real projective line is defined by the following construction: :Given three collinear points , let be a point not lying on their join and let any line through meet at respectively. If and meet at , and meets at , then is called the harmonic conjugate of with respect to . The point does not depend on what point is taken initially, nor upon what line through is used to find and . This fact follows from Desargues theorem. In real projective geometry, harmonic conjugacy can also be defined in terms of the cross-ratio as . Cross-ratio criterion The four points are sometimes called a harmonic range (on the real projective line) as it is found that always divides the segment ''internally'' in the same proportion as divides ''externally''. That is: :, AC, :, BC, = , AD, :, DB, \, . If these segments are now endowed with the ordinary metric interpretation of real num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, ''point'' and ''line'' are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gino Fano
Gino Fano (5 January 18718 November 1952) was an Italian mathematician, best known as the founder of finite geometry. He was born to a wealthy Jewish family in Mantua, in Italy and died in Verona, also in Italy. Fano made various contributions on projective and algebraic geometry. His work in the foundations of geometry predates the similar, but more popular, work of David Hilbert by about a decade. He was the father of physicist Ugo Fano and electrical engineer Robert Fano and uncle to physicist and mathematician Giulio Racah. Mathematical work Fano was an early writer in the area of finite projective spaces. In his article on proving the independence of his set of axioms for projective ''n''-space, among other things, he considered the consequences of having a fourth harmonic point be equal to its conjugate. This leads to a configuration of seven points and seven lines contained in a finite three-dimensional space with 15 points, 35 lines and 15 planes, in which each line ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

PG(3,2)
In finite geometry, PG(3,2) is the smallest three-dimensional projective space. It can be thought of as an extension of the Fano plane. It has 15 points, 35 lines, and 15 planes. It also has the following properties: * Each point is contained in 7 lines and 7 planes * Each line is contained in 3 planes and contains 3 points * Each plane contains 7 points and 7 lines * Each plane is isomorphic to the Fano plane * Every pair of distinct planes intersect in a line * A line and a plane not containing the line intersect in exactly one point Constructions Construction from ''K''6 Take a complete graph ''K''6. It has 15 edges, 15 perfect matchings and 20 triangles. Create a point for each of the 15 edges, and a line for each of the 20 triangles and 15 matchings. The incidence structure between each triangle or matching (line) to its three constituent edges (points), induces a PG(3,2). Construction from Fano planes Take a Fano plane and apply all 5040 permutations of its 7 points. Dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]