G2 Structure
   HOME
*





G2 Structure
In differential geometry, a G_2-structure is an important type of G-structure that can be defined on a smooth manifold. If ''M'' is a smooth manifold of dimension seven, then a G2-structure is a reduction of structure group of the frame bundle of ''M'' to the compact, exceptional Lie group G2. Equivalent conditions The condition of ''M '' admitting a G_2 structure is equivalent to any of the following conditions: *The first and second Stiefel–Whitney classes of ''M'' vanish. *''M'' is orientable and admits a spin structure. The last condition above correctly suggests that many manifolds admit G_2-structures. History A manifold with holonomy G_2 was first introduced by Edmond Bonan in 1966, who constructed the parallel 3-form, the parallel 4-form and showed that this manifold was Ricci-flat. The first complete, but noncompact 7-manifolds with holonomy G_2 were constructed by Robert Bryant and Salamon in 1989. The first compact 7-manifolds with holonomy G_2 were const ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Edmond Bonan
Edmond Bonan (born 27 January 1937 in Haifa, Mandatory Palestine) is a French mathematician, known particularly for his work on special holonomy. Biography After completing his undergraduate studies at the École polytechnique, Bonan went on to write his 1967 University of Paris doctoral dissertation in Differential geometry under the supervision of André Lichnerowicz. From 1968 to 1997, he held the post of lecturer and then professor at the University of Picardie Jules Verne in Amiens, where he currently holds the title of professor emeritus. Early in his career, from 1969 to 1981, he also lectured at the École Polytechnique. See also * G2 manifold * G2 structure * Spin(7) manifold *Holonomy * Quaternion-Kähler manifold * Calibrated geometry * Hypercomplex manifold *Hyperkähler manifold *Uniform polyhedron In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spin(7) Manifold
In mathematics, a Spin(7)-manifold is an eight-dimensional Riemannian manifold whose holonomy group is contained in Spin(7). Spin(7)-manifolds are Ricci-flat and admit a parallel spinor. They also admit a parallel 4-form, known as the Cayley form, which is a calibrating form for a special class of submanifolds called Cayley cycles. History The fact that Spin(7) might possibly arise as the holonomy group of certain Riemannian 8-manifolds was first suggested by the 1955 classification theorem of Marcel Berger, and this possibility remained consistent with the simplified proof of Berger's theorem given by Jim Simons in 1962. Although not a single example of such a manifold had yet been discovered, Edmond Bonan then showed in 1966 that, if such a manifold did in fact exist, it would carry a parallel 4-form, and that it would necessarily be Ricci-flat. The first local examples of 8-manifolds with holonomy Spin(7) were finally constructed around 1984 by Robert Bryant, and his ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Élie Cartan
Élie Joseph Cartan (; 9 April 1869 – 6 May 1951) was an influential French mathematician who did fundamental work in the theory of Lie groups, differential systems (coordinate-free geometric formulation of PDEs), and differential geometry. He also made significant contributions to general relativity and indirectly to quantum mechanics. He is widely regarded as one of the greatest mathematicians of the twentieth century. His son Henri Cartan was an influential mathematician working in algebraic topology. Life Élie Cartan was born 9 April 1869 in the village of Dolomieu, Isère to Joseph Cartan (1837–1917) and Anne Cottaz (1841–1927). Joseph Cartan was the village blacksmith; Élie Cartan recalled that his childhood had passed under "blows of the anvil, which started every morning from dawn", and that "his mother, during those rare minutes when she was free from taking care of the children and the house, was working with a spinning-wheel". Élie had an elder sister Je ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Contact Geometry
In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution (differential geometry), distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given (at least locally) as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'integrable system, complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem (differential topology), Frobenius theorem. Contact geometry is in many ways an odd-dimensional counterpart of symplectic geometry, a structure on certain even-dimensional manifolds. Both contact and symplectic geometry are motivated by the mathematical formalism of class ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




G2 Manifold
In differential geometry, a ''G''2 manifold is a seven-dimensional Riemannian manifold with holonomy group contained in ''G''2. The group G_2 is one of the five exceptional simple Lie groups. It can be described as the automorphism group of the octonions, or equivalently, as a proper subgroup of special orthogonal group SO(7) that preserves a spinor in the eight-dimensional spinor representation or lastly as the subgroup of the general linear group GL(7) which preserves the non-degenerate 3-form \phi, the associative form. The Hodge dual, \psi=*\phi is then a parallel 4-form, the coassociative form. These forms are calibrations in the sense of Reese Harvey and H. Blaine Lawson, and thus define special classes of 3- and 4-dimensional submanifolds. Properties All G_2-manifold are 7-dimensional, Ricci-flat, orientable spin manifolds. In addition, any compact manifold with holonomy equal to G_2 has finite fundamental group, non-zero first Pontryagin class, and non-zero third ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dominic Joyce
Dominic David Joyce Fellow of the Royal Society, FRS (born 8 April 1968) is a British mathematician, currently a professor at the University of Oxford and a fellow of Lincoln College, Oxford, Lincoln College since 1995. His undergraduate and doctoral studies were at Merton College, Oxford. He undertook a DPhil in geometry under the supervision of Simon Donaldson, completed in 1992. After this he held short-term research posts at Christ Church, Oxford, as well as Princeton University and the University of California, Berkeley in the United States. Joyce is known for his construction of the first known explicit examples of compact Joyce manifolds (i.e., manifolds with G2 (mathematics), G2 holonomy). He has received the London Mathematical Society Junior Whitehead Prize and the European Mathematical Society Young Mathematicians Prize. In 1998 he was an Invited Speaker of the International Congress of Mathematicians in Berlin. Selected publications * * * with Yinan Song:arxiv.or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Robert Bryant (mathematician)
Robert Leamon Bryant (born August 30, 1953, Kipling) is an American mathematician. He works at Duke University and specializes in differential geometry. Education and career Bryant grew up in a farming family in Harnett County and was a first-generation college student. He obtained a bachelor's degree at North Caroline State University at Raleigh in 1974 and a PhD at University of North Carolina at Chapel Hill in 1979. His thesis was entitled "''Some Aspects of the Local and Global Theory of Pfaffian Systems''" and was written under the supervision of Robert Gardner. He worked at Rice University for seven years, as assistant professor (1979–1981), associate professor (1981–1982) and full professor (1982–1986). He then moved to Duke University, where he worked for twenty years as J. M. Kreps Professor. Between 2007 and 2013 he worked as full professor at University of California, Berkeley, where he served as the director of the Mathematical Sciences Research Institute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spin Structure
In differential geometry, a spin structure on an orientable Riemannian manifold allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in the definition of any theory with uncharged fermions. They are also of purely mathematical interest in differential geometry, algebraic topology, and K theory. They form the foundation for spin geometry. Overview In geometry and in field theory, mathematicians ask whether or not a given oriented Riemannian manifold (''M'',''g'') admits spinors. One method for dealing with this problem is to require that ''M'' has a spin structure. This is not always possible since there is potentially a topological obstruction to the existence of spin structures. Spin structures will exist if and only if the second Stiefel–Whitney class ''w''2(''M'') ∈ H2(''M'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


G-structure
In differential geometry, a ''G''-structure on an ''n''- manifold ''M'', for a given structure group ''G'', is a principal ''G''- subbundle of the tangent frame bundle F''M'' (or GL(''M'')) of ''M''. The notion of ''G''-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields. For example, for the orthogonal group, an O(''n'')-structure defines a Riemannian metric, and for the special linear group an SL(''n'',R)-structure is the same as a volume form. For the trivial group, an -structure consists of an absolute parallelism of the manifold. Generalising this idea to arbitrary principal bundles on topological spaces, one can ask if a principal G-bundle over a group G "comes from" a subgroup H of G. This is called reduction of the structure group (to H). Several structures on manifolds, such as a complex structure, a symplectic structure, or a Kähler structure, are ''G''-structures with an additional integrabilit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orientable
In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is orientable if such a consistent definition exists. In this case, there are two possible definitions, and a choice between them is an orientation of the space. Real vector spaces, Euclidean spaces, and spheres are orientable. A space is non-orientable if "clockwise" is changed into "counterclockwise" after running through some loops in it, and coming back to the starting point. This means that a geometric shape, such as , that moves continuously along such a loop is changed into its own mirror image . A Möbius strip is an example of a non-orientable space. Various equivalent formulations of orientability can be given, depending on the desired application and level of generality. Formulations applicable to general topological manifolds oft ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]