Guinier–Preston Zone
   HOME
*





Guinier–Preston Zone
A Guinier–Preston zone, or GP-zone, is a fine-scale metallurgical phenomenon, involving early stage precipitation. GP-zones are associated with the phenomenon of age hardening, whereby room-temperature reactions continue to occur within a material through time, resulting in changing physical properties. In particular, this occurs in several aluminium series, such as the 6000 and 7000 series alloys. Physically, GP zones are extremely fine-scaled (on the order of 3–10 nm in size) solute enriched regions of the material, which offer physical obstructions to the motion of dislocations, above that of the solid solution strengthening of the solute components. In 7075 aluminium for example, Zn–Mg clusters precede the formation of equilibrium MgZn2 precipitates. The zone is named after André Guinier André Guinier (1 August 1911 – 3 July 2000) was a French physicist who did important work in the field of X-ray diffraction and solid-state physics. He worked at the Conse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Age Hardening
Precipitation hardening, also called age hardening or particle hardening, is a heat treatment technique used to increase the yield strength of malleable materials, including most structural alloys of aluminium, magnesium, nickel, titanium, and some steels and stainless steels. In superalloys, it is known to cause yield strength anomaly providing excellent high-temperature strength. Precipitation hardening relies on changes in solid solubility with temperature to produce fine particles of an impurity phase, which impede the movement of dislocations, or defects in a crystal's lattice. Since dislocations are often the dominant carriers of plasticity, this serves to harden the material. The impurities play the same role as the particle substances in particle-reinforced composite materials. Just as the formation of ice in air can produce clouds, snow, or hail, depending upon the thermal history of a given portion of the atmosphere, precipitation in solids can produce many different ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dislocation
In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to slide over each other at low stress levels and is known as ''glide'' or slip. The crystalline order is restored on either side of a ''glide dislocation'' but the atoms on one side have moved by one position. The crystalline order is not fully restored with a ''partial dislocation''. A dislocation defines the boundary between ''slipped'' and ''unslipped'' regions of material and as a result, must either form a complete loop, intersect other dislocations or defects, or extend to the edges of the crystal. A dislocation can be characterised by the distance and direction of movement it causes to atoms which is defined by the Burgers vector. Plastic deformation of a material occurs by the creation and movement of many dislocations. The number and a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solid Solution
A solid solution, a term popularly used for metals, is a homogenous mixture of two different kinds of atoms in solid state and have a single crystal structure. Many examples can be found in metallurgy, geology, and solid-state chemistry. The word "solution" is used to describe the intimate mixing of components at the atomic level and distinguishes these homogeneous materials from physical mixtures of components. Two terms are mainly associated with solid solutions - ''solvents'' and ''solutes,'' depending on the relative abundance of the atomic species. In general if two compounds are isostructural then a solid solution will exist between the end members (also known as parents). For example sodium chloride and potassium chloride have the same cubic crystal structure so it is possible to make a pure compound with any ratio of sodium to potassium (Na1-xKx)Cl by dissolving that ratio of NaCl and KCl in water and then evaporating the solution. A member of this family is sold under t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

André Guinier
André Guinier (1 August 1911 – 3 July 2000) was a French physicist who did important work in the field of X-ray diffraction and solid-state physics. He worked at the Conservatoire National des Arts et Métiers, then taught at the University of Paris and later at the University of Paris-Sud in Orsay, where he co-founded the Laboratory of Solid State Physics. He was elected to the French Academy of Sciences in 1971 and won the Gregori Aminoff Prize in 1985. In the field of small-angle scattering he discovered the relationship of particle size to intensity which is called Guinier's Law. He developed the Guinier camera for use in X-ray diffraction and contributed to the development of the electron microprobe by Raimond Castaing. Together with Prof George Dawson Preston he also gives his name to the Guinier-Preston zone Publications *Guinier, André (1955) ''Small-angle scattering of X-rays''. OCLC number: 01646250. *Guinier, André (1963). "X-ray Diffraction. In Crystals, Imp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


George Dawson Preston
George Dawson Preston FRSE (1896–1972) was a 20th century British physicist specialising in crystallography and the structure of alloys. He was one of the first to use x-rays and electron diffraction to study the crystal structure of metals and alloys. Along with André Guinier, Preston gives his name to the Guinier-Preston zone, discovered in 1938. Life He was born in the village of Rathgar slightly south of Dublin on 8 August 1896 the eldest son of Prof Thomas Preston FRS, and the college head, Katherine Mary (born McEwen). His father died when George was only four years old. George was educated at Oundle School in Northamptonshire. In the First World War he served in the Princess of Wales' Own Regiment and was wounded in the leg. He studied Science at Cambridge University graduating MA then gaining a postgraduate doctorate (DSc) in 1921. He found immediate employment in the Metallurgy Division of the National Physical Laboratory. He stayed there until 1943 when he r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Surface Science
Surface science is the study of physical and chemical phenomena that occur at the interface of two phases, including solid–liquid interfaces, solid–gas interfaces, solid–vacuum interfaces, and liquid–gas interfaces. It includes the fields of ''surface chemistry'' and '' surface physics''. Some related practical applications are classed as surface engineering. The science encompasses concepts such as heterogeneous catalysis, semiconductor device fabrication, fuel cells, self-assembled monolayers, and adhesives. Surface science is closely related to interface and colloid science. Interfacial chemistry and physics are common subjects for both. The methods are different. In addition, interface and colloid science studies macroscopic phenomena that occur in heterogeneous systems due to peculiarities of interfaces. History The field of surface chemistry started with heterogeneous catalysis pioneered by Paul Sabatier on hydrogenation and Fritz Haber on the Haber process. Irving ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metal Heat Treatments
A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typically ductile (can be drawn into wires) and malleable (they can be hammered into thin sheets). These properties are the result of the ''metallic bond'' between the atoms or molecules of the metal. A metal may be a chemical element such as iron; an alloy such as stainless steel; or a molecular compound such as polymeric sulfur nitride. In physics, a metal is generally regarded as any substance capable of conducting electricity at a temperature of absolute zero. Many elements and compounds that are not normally classified as metals become metallic under high pressures. For example, the nonmetal iodine gradually becomes a metal at a pressure of between 40 and 170 thousand times atmospheric pressure. Equally, some materials regarded as metals ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]