HOME
*





Group Field Theory
Group field theory (GFT) is a quantum field theory in which the base manifold is taken to be a Lie group. It is closely related to background independent quantum gravity approaches such as loop quantum gravity, the spin foam formalism and causal dynamical triangulation. It can be shown that its perturbative expansion can be interpreted as spin foams and simplicial pseudo-manifolds (depending on the representation of the fields). Thus, its partition function defines a non-perturbative sum over all simplicial topologies and geometries, giving a path integral formulation of quantum spacetime. See also *Shape dynamics * Causal Sets * Fractal cosmology * Loop quantum gravity * Planck scale * Quantum gravity *Regge calculus * Simplex *Simplicial manifold *Spin foam In physics, the topological structure of spinfoam or spin foam consists of two-dimensional faces representing a configuration required by functional integration to obtain a Feynman's path integral description o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Spacetime
In mathematical physics, the concept of quantum spacetime is a generalization of the usual concept of spacetime in which some variables that ordinarily commute are assumed not to commute and form a different Lie algebra. The choice of that algebra still varies from theory to theory. As a result of this change some variables that are usually continuous may become discrete. Often only such discrete variables are called "quantized"; usage varies. The idea of quantum spacetime was proposed in the early days of quantum theory by Heisenberg and Ivanenko as a way to eliminate infinities from quantum field theory. The germ of the idea passed from Heisenberg to Rudolf Peierls, who noted that electrons in a magnetic field can be regarded as moving in a quantum spacetime, and to Robert Oppenheimer, who carried it to Hartland Snyder, who published the first concrete example. Snyder's Lie algebra was made simple by C. N. Yang in the same year. Overview Physical spacetime is a quantum spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplicial Manifold
In physics, the term simplicial manifold commonly refers to one of several loosely defined objects, commonly appearing in the study of Regge calculus. These objects combine attributes of a simplex with those of a manifold. There is no standard usage of this term in mathematics, and so the concept can refer to a triangulation in topology, or a piecewise linear manifold, or one of several different functors from either the category of sets or the category of simplicial sets to the category of manifolds. A manifold made out of simplices A simplicial manifold is a simplicial complex for which the geometric realization is homeomorphic to a topological manifold. This is essentially the concept of a triangulation in topology. This can mean simply that a neighborhood of each vertex (i.e. the set of simplices that contain that point as a vertex) is homeomorphic to a ''n''-dimensional ball. A simplicial object built from manifolds A simplicial manifold is also a simplicial object in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simplex
In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, * a 0-dimensional simplex is a point, * a 1-dimensional simplex is a line segment, * a 2-dimensional simplex is a triangle, * a 3-dimensional simplex is a tetrahedron, and * a 4-dimensional simplex is a 5-cell. Specifically, a ''k''-simplex is a ''k''-dimensional polytope which is the convex hull of its ''k'' + 1 vertices. More formally, suppose the ''k'' + 1 points u_0, \dots, u_k \in \mathbb^ are affinely independent, which means u_1 - u_0,\dots, u_k-u_0 are linearly independent. Then, the simplex determined by them is the set of points : C = \left\ This representation in terms of weighted vertices is known as the barycentric coordinate system. A regular simplex is a simplex that is also a regular polytope. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regge Calculus
In general relativity, Regge calculus is a formalism for producing simplicial approximations of spacetimes that are solutions to the Einstein field equation. The calculus was introduced by the Italian theoretician Tullio Regge in 1961. Available (subscribers only) aIl Nuovo Cimento/ref> Overview The starting point for Regge's work is the fact that every four dimensional time orientable Lorentzian manifold admits a triangulation into simplices. Furthermore, the spacetime curvature can be expressed in terms of deficit angles associated with ''2-faces'' where arrangements of ''4-simplices'' meet. These 2-faces play the same role as the vertices where arrangements of ''triangles'' meet in a triangulation of a ''2-manifold'', which is easier to visualize. Here a vertex with a positive angular deficit represents a concentration of ''positive'' Gaussian curvature, whereas a vertex with a negative angular deficit represents a concentration of ''negative'' Gaussian curvature. The defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Loop Quantum Gravity
Loop quantum gravity (LQG) is a theory of quantum gravity, which aims to merge quantum mechanics and general relativity, incorporating matter of the Standard Model into the framework established for the pure quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Einstein's geometric formulation rather than the treatment of gravity as a force. As a theory LQG postulates that the structure of Spacetime, space and time is composed of finite loops woven into an extremely fine fabric or network. These networks of loops are called spin networks. The evolution of a spin network, or spin foam, has a scale above the order of a Planck length, approximately 10−35 meters, and smaller scales are meaningless. Consequently, not just matter, but space itself, prefers an atomic hypothesis, atomic structure. The areas of research, which involves about 30 research groups worldwide, share the basic physical assumptions and the mathematical description of q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fractal Cosmology
In physical cosmology, fractal cosmology is a set of minority cosmological theories which state that the distribution of matter in the Universe, or the structure of the universe itself, is a fractal across a wide range of scales (see also: multifractal system). More generally, it relates to the usage or appearance of fractals in the study of the universe and matter. A central issue in this field is the fractal dimension of the universe or of matter distribution within it, when measured at very large or very small scales. Fractals in observational cosmology The first attempt to model the distribution of galaxies with a fractal pattern was made by Luciano Pietronero and his team in 1987, and a more detailed view of the universe's large-scale structure emerged over the following decade, as the number of cataloged galaxies grew larger. Pietronero argues that the universe shows a definite fractal aspect over a fairly wide range of scale, with a fractal dimension of about 2. The fract ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shape Dynamics
In theoretical physics, shape dynamics is a theory of gravity that implements Mach's principle, developed with the specific goal to obviate the problem of time and thereby open a new path toward the resolution of incompatibilities between general relativity and quantum mechanics. Shape dynamics is dynamically equivalent to the canonical formulation of general relativity, known as the ADM formalism. Shape dynamics is not formulated as an implementation of spacetime diffeomorphism invariance, but as an implementation of spatial relationalism based on spatial diffeomorphisms and spatial Weyl symmetry. An important consequence of shape dynamics is the absence of a problem of time in canonical quantum gravity. The replacement of the spacetime picture with a picture of evolving spatial conformal geometry opens the door for a number of new approaches to quantum gravity. An important development in this theory was contributed in 2010 by Henrique Gomes, Sean Gryb and Tim Koslowski, buildin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-perturbative
In mathematics and physics, a non-perturbative function or process is one that cannot be described by perturbation theory. An example is the function : f(x) = e^, which does not have a Taylor series at ''x'' = 0. Every coefficient of the Taylor expansion around ''x'' = 0 is exactly zero, but the function is non-zero if ''x'' ≠ 0. In physics, such functions arise for phenomena which are impossible to understand by perturbation theory, at any finite order. In quantum field theory, 't Hooft–Polyakov monopoles, domain walls, flux tubes, and instantons are examples. A concrete, physical example is given by the Schwinger effect, whereby a strong electric field may spontaneously decay into electron-positron pairs. For not too strong fields, the rate per unit volume of this process is given by, : \Gamma = \frac \mathrm^ which cannot be expanded in a Taylor series in the electric charge e, or the electric field strength E. Here m is the mass of an electron and we have used units ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Gravity
Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars. Three of the four fundamental forces of physics are described within the framework of quantum mechanics and quantum field theory. The current understanding of the fourth force, gravity, is based on Albert Einstein's general theory of relativity, which is formulated within the entirely different framework of classical physics. However, that description is incomplete: describing the gravitational field of a black hole in the general theory of relativity leads physical quantities, such as the spacetime curvature, to diverge at the center of the black hole. This signals the breakdown of the general theory of relativity and the need for a theory that goes b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]