HOME
*





Gregorian Telescope
The Gregorian telescope is a type of reflecting telescope designed by Scottish mathematician and astronomer James Gregory in the 17th century, and first built in 1673 by Robert Hooke. James Gregory was a contemporary of Isaac Newton. Both often worked simultaneously on similar projects. Gregory's design was published in 1663 and pre-dates the first practical reflecting telescope, the Newtonian telescope, built by Sir Isaac Newton in 1668."Isaac Newton: adventurer in thought", by Alfred Rupert Hallpage 67 However, Gregory's design was only a theoretical description, and he never actually constructed the telescope. It was not successfully built until five years after Newton's first reflecting telescope. History The Gregorian telescope is named after the James Gregory design, which appeared in his 1663 publication (The Advance of Optics). Similar theoretical designs have been found in the writings of Bonaventura Cavalieri ( (On Burning Mirrors), 1632) and Marin Mersenne (, 1636). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gregorian Telescope
The Gregorian telescope is a type of reflecting telescope designed by Scottish mathematician and astronomer James Gregory in the 17th century, and first built in 1673 by Robert Hooke. James Gregory was a contemporary of Isaac Newton. Both often worked simultaneously on similar projects. Gregory's design was published in 1663 and pre-dates the first practical reflecting telescope, the Newtonian telescope, built by Sir Isaac Newton in 1668."Isaac Newton: adventurer in thought", by Alfred Rupert Hallpage 67 However, Gregory's design was only a theoretical description, and he never actually constructed the telescope. It was not successfully built until five years after Newton's first reflecting telescope. History The Gregorian telescope is named after the James Gregory design, which appeared in his 1663 publication (The Advance of Optics). Similar theoretical designs have been found in the writings of Bonaventura Cavalieri ( (On Burning Mirrors), 1632) and Marin Mersenne (, 1636). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Primary Mirror
A primary mirror (or primary) is the principal light-gathering surface (the objective) of a reflecting telescope. Description The primary mirror of a reflecting telescope is a spherical or parabolic shaped disks of polished reflective metal (speculum metal up to the mid 19th century), or in later telescopes, glass or other material coated with a reflective layer. One of the first known reflecting telescopes, Newton's reflector of 1668, used a 3.3 cm polished metal primary mirror. The next major change was to use silver on glass rather than metal, in the 19th century such was with the Crossley reflector. This was changed to vacuum deposited aluminum on glass, used on the 200-inch Hale telescope. Solid primary mirrors have to sustain their own weight and not deform under gravity, which limits the maximum size for a single piece primary mirror. Segmented mirror configurations are used to get around the size limitation on single primary mirrors. For example, the Giant Mag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Green Bank Telescope
The Robert C. Byrd Green Bank Telescope (GBT) in Green Bank, West Virginia, US is the world's largest fully steerable radio telescope, surpassing the Effelsberg 100-m Radio Telescope in Germany. The Green Bank site was part of the National Radio Astronomy Observatory (NRAO) until September 30, 2016. Since October 1, 2016, the telescope has been operated by the independent Green Bank Observatory. The telescope's name honors the late Senator Robert C. Byrd who represented West Virginia and who pushed the funding of the telescope through Congress. The Green Bank Telescope operates at meter to millimeter wavelengths. Its 100-meter diameter collecting area, unblocked aperture, and good surface accuracy provide superb sensitivity across the telescope's full 0.1–116 GHz operating range. The GBT is fully steerable, and 85 percent of the local celestial hemisphere is accessible. It is used for astronomy about 6500 hours every year, with 2000–3000 hours per year going to high-fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MeerKAT
MeerKAT, originally the Karoo Array Telescope, is a radio telescope consisting of 64 antennas in the Meerkat National Park, in the Northern Cape of South Africa. In 2003, South Africa submitted an expression of interest to host the Square Kilometre Array (SKA) Radio Telescope in Africa, and the locally designed and built MeerKAT was incorporated into the first phase of the SKA. MeerKAT was launched in 2018. Along with the Hydrogen Epoch of Reionization Array (HERA), also in South Africa, and two radio telescopes in Western Australia, the Australian SKA Pathfinder (ASKAP) and the Murchison Widefield Array (MWA), the MeerKAT is one of four precursors to the final SKA. History MeerKAT is a precursor for the SKA-mid array, as are the Hydrogen Epoch of Reionization Array (HERA), the Australian SKA Pathfinder (ASKAP) and the Murchison Widefield Array (MWA). Description It is located on the SKA site in the Karoo, and is a pathfinder for SKA-mid technologies and science. It was design ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Foucault Knife-edge Test
The Foucault knife-edge test is an optical test to accurately measure the shape of concave curved mirrors. It is commonly used by amateur telescope makers for figuring primary mirrors in reflecting telescopes. It uses a relatively simple, inexpensive apparatus compared to other testing techniques. Overview The Foucault knife-edge test was described in 1858 by French physicist Léon Foucault as a way to measure conic shapes of optical mirrors. It measures mirror surface dimensions by reflecting light into a knife edge at or near the mirror's centre of curvature. In doing so, it only needs a tester which in its most basic 19th century form consists of a light bulb, a piece of tinfoil with a pinhole in it, and a razor blade to create the knife edge. The testing device is adjustable along the X-axis (knife cut direction) across the Y-axis (optical axis), and is usually equipped with measurable adjustment to 0.001 inch (25 µm) or better along lines parallel to the optical axi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Amateur Telescope Making
''Amateur Telescope Making'' (''ATM'') is a series of three books edited by Albert G. Ingalls between 1926 and 1953 while he was an associate editor at ''Scientific American''. The books cover various aspects of telescope construction and observational technique, sometimes at quite an advanced level, but always in a way that is accessible to the intelligent amateur. The caliber of the contributions is uniformly high and the books have remained in constant use by both amateurs and professionals. The first volume was essentially a reprinting of articles written by Ingalls and Russell W. Porter for Ingalls's monthly column "The Backyard Astronomer" (later " The Amateur Scientist") in the 1920s. It also featured numerous drawings by Porter. The two later volumes contained chapters written by James Gilbert Baker, George Ellery Hale, George Willis Ritchey and others on topics ranging from lens grinding to monochromators to photoelectric photometry. Much of the information, including ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hinode (satellite)
Hinode (; ja, ひので, , Sunrise), formerly Solar-B, is a Japan Aerospace Exploration Agency Solar mission with United States and United Kingdom collaboration. It is the follow-up to the Yohkoh (Solar-A) mission and it was launched on the final flight of the M-V rocket from Uchinoura Space Center, Japan on 22 September 2006 at 21:36 UTC (23 September, 06:36 JST). Initial orbit was perigee height 280 km, apogee height 686 km, inclination 98.3 degrees. Then the satellite maneuvered to the quasi-circular sun-synchronous orbit over the day/night terminator, which allows near-continuous observation of the Sun. On 28 October 2006, the probe's instruments captured their first images. The data from Hinode are being downloaded to the Norwegian, terrestrial Svalsat station, operated by ''Kongsberg'' a few kilometres west of Longyearbyen, Svalbard. From there, data is transmitted by Telenor through a fibre-optic network to mainland Norway at Harstad, and on to data users ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field Stop
In optics, a diaphragm is a thin opaque structure with an opening (aperture) at its center. The role of the diaphragm is to ''stop'' the passage of light, except for the light passing through the ''aperture''. Thus it is also called a stop (an aperture stop, if it limits the brightness of light reaching the focal plane, or a field stop or flare stop for other uses of diaphragms in lenses). The diaphragm is placed in the light path of a lens or objective, and the size of the aperture regulates the amount of light that passes through the lens. The centre of the diaphragm's aperture coincides with the optical axis of the lens system. Most modern cameras use a type of adjustable diaphragm known as an iris diaphragm, and often referred to simply as an iris. See the articles on aperture and f-number for the photographic effect and system of quantification of varying the opening in the diaphragm. Iris diaphragms versus other types A natural optical system that has a diaphragm an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Steward Observatory
Steward Observatory is the research arm of the Department of Astronomy at the University of Arizona (UArizona). Its offices are located on the UArizona campus in Tucson, Arizona (US). Established in 1916, the first telescope and building were formally dedicated on April 23, 1923. It now operates, or is a partner in telescopes at five mountain-top locations in Arizona, one in New Mexico, one in Hawaii, and one in Chile. It has provided instruments for three different space telescopes and numerous terrestrial ones. Steward also has one of the few facilities in the world that can cast and figure the very large primary mirrors used in telescopes built in the early 21st century. History Steward Observatory owes its existence to the efforts of American astronomer and dendrochronologist Andrew Ellicott Douglass. In 1906, Douglass accepted a position as Assistant Professor of Physics and Geography at the University of Arizona in Tucson, Arizona. Almost immediately upon his arrival ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spotting Scope
A spotting scope is a compact high-power telescope optimized for detailed observation of distant objects. They are used as portable optical enhancement devices for various outdoor activities such as birdwatching, skygazing and other naturalist activities, for hunting and target shooting to verify a marksman's shot placements, for tactical ranging and surveillance, and for any other application that requires higher magnification than ordinary binoculars (typically 20× to 60×). The light-gathering power and resolution of a spotting scope is determined by the diameter of the objective lens, typically between . The larger the objective, the more massive and expensive the telescope. The optical assembly has a small refracting objective lens, an internal image-erecting system, and an eyepiece that is usually removable. The image-erecting system may use relay lenses, prisms such as Porro or roof prisms, or a catadioptric system of the Schmidt or Maksutov design. Spotting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cassegrain Reflector
The Cassegrain reflector is a combination of a primary concave mirror and a secondary convex mirror, often used in optical telescopes and radio antennas, the main characteristic being that the optical path folds back onto itself, relative to the optical system's primary mirror entrance aperture. This design puts the focal point at a convenient location behind the primary mirror and the convex secondary adds a telephoto effect creating a much longer focal length in a mechanically short system. In a symmetrical Cassegrain both mirrors are aligned about the optical axis, and the primary mirror usually contains a hole in the center, thus permitting the light to reach an eyepiece, a camera, or an image sensor. Alternatively, as in many radio telescopes, the final focus may be in front of the primary. In an asymmetrical Cassegrain, the mirror(s) may be tilted to avoid obscuration of the primary or to avoid the need for a hole in the primary mirror (or both). The classic Cassegrain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Focal Length
The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a system converges light, while a negative focal length indicates that the system diverges light. A system with a shorter focal length bends the rays more sharply, bringing them to a focus in a shorter distance or diverging them more quickly. For the special case of a thin lens in air, a positive focal length is the distance over which initially collimated (parallel) rays are brought to a focus, or alternatively a negative focal length indicates how far in front of the lens a point source must be located to form a collimated beam. For more general optical systems, the focal length has no intuitive meaning; it is simply the inverse of the system's optical power. In most photography and all telescopy, where the subject is essentially infinitely far away, longer focal length (lower opti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]