Gossard Perspector
In geometry the Gossard perspector (also called the Zeeman–Gossard perspector) is a special point associated with a plane triangle. It is a triangle center and it is designated as X(402) in Clark Kimberling's Encyclopedia of Triangle Centers. The point was named ''Gossard perspector'' by John Conway in 1998 in honour of Harry Clinton Gossard who discovered its existence in 1916. Later it was learned that the point had appeared in an article by Christopher Zeeman published during 1899 – 1902. From 2003 onwards the Encyclopedia of Triangle Centers has been referring to this point as ''Zeeman–Gossard perspector''. Definition Gossard triangle Let ''ABC'' be any triangle. Let the Euler line of triangle ''ABC'' meet the sidelines ''BC'', ''CA'' and ''AB'' of triangle ''ABC'' at ''D'', ''E'' and ''F'' respectively. Let ''AgBgCg'' be the triangle formed by the Euler lines of the triangles ''AEF'', ''BFD'' and ''CDE'', the vertex ''Ag'' being the intersection of the Euler lines ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plane (geometry)
In mathematics, a plane is a Euclidean (flat), two-dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise as subspaces of some higher-dimensional space, as with one of a room's walls, infinitely extended, or they may enjoy an independent existence in their own right, as in the setting of two-dimensional Euclidean geometry. Sometimes the word ''plane'' is used more generally to describe a two-dimensional surface, for example the hyperbolic plane and elliptic plane. When working exclusively in two-dimensional Euclidean space, the definite article is used, so ''the'' plane refers to the whole space. Many fundamental tasks in mathematics, geometry, trigonometry, graph theory, and graphing are performed in a two-dimensional space, often in the plane. Euclidean geometry Euclid set forth the first great landmark of mathematical thought, an axiomatic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangle
A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non-Collinearity, collinear, determine a unique triangle and simultaneously, a unique Plane (mathematics), plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangle Center
In geometry, a triangle center (or triangle centre) is a point in the plane that is in some sense a center of a triangle akin to the centers of squares and circles, that is, a point that is in the middle of the figure by some measure. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions. Each of these classical centers has the property that it is invariant (more precisely equivariant) under similarity transformations. In other words, for any triangle and any similarity transformation (such as a rotation, reflection, dilation, or translation), the center of the transformed triangle is the same point as the transformed center of the original triangle. This invariance is the defining property of a triangle center. It rules out other well-known points such as the Brocard points which are not invariant under reflection and so fail to qualify as triangle centers. For an equilateral triangle, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Clark Kimberling
Clark Kimberling (born November 7, 1942 in Hinsdale, Illinois) is a mathematician, musician, and composer. He has been a mathematics professor since 1970 at the University of Evansville. His research interests include triangle centers, integer sequences, and hymnology. Kimberling received his PhD in mathematics in 1970 from the Illinois Institute of Technology, under the supervision of Abe Sklar. Since at least 1994, he has maintained a list of triangle centers and their properties. In its current on-line form, the Encyclopedia of Triangle Centers, this list comprises tens of thousands of entries. He has contributed to ''The Hymn'', the journal of the Hymn Society in the United States and Canada; and in the '' Canterbury Dictionary of Hymnology''. Kimberling's golden triangle Robert C. Schoen has defined a "golden triangle" as a triangle with two of its sides in the golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Encyclopedia Of Triangle Centers
The Encyclopedia of Triangle Centers (ETC) is an online list of thousands of points or "centers" associated with the geometry of a triangle. It is maintained by Clark Kimberling, Professor of Mathematics at the University of Evansville. , the list identifies 52,440 triangle centers. Each point in the list is identified by an index number of the form ''X''(''n'')—for example, ''X''(1) is the incenter. The information recorded about each point includes its trilinear and barycentric coordinates and its relation to lines joining other identified points. Links to The Geometer's Sketchpad diagrams are provided for key points. The Encyclopedia also includes a glossary of terms and definitions. Each point in the list is assigned a unique name. In cases where no particular name arises from geometrical or historical considerations, the name of a star is used instead. For example, the 770th point in the list is named ''point Acamar''. The first 10 points listed in the Encyclopedia ar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John Horton Conway
John Horton Conway (26 December 1937 – 11 April 2020) was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches of recreational mathematics, most notably the invention of the cellular automaton called the Game of Life. Born and raised in Liverpool, Conway spent the first half of his career at the University of Cambridge before moving to the United States, where he held the John von Neumann Professorship at Princeton University for the rest of his career. On 11 April 2020, at age 82, he died of complications from COVID-19. Early life and education Conway was born on 26 December 1937 in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at a very early age. By the time he was 11, his ambition was to become a mathematician. After leaving sixth form, he studied mathematics at Gonville and Caius College, Camb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Harry Clinton Gossard
Harry Clinton Gossard (1884–1954) was an American educator and geometer. He is credited with the discovery of a then unknown triangle center in 1916 to which John Conway assigned the name Gossard perspector in 1998. After receiving his Ph.D. from Johns Hopkins University in 1912, Gossard taught at University of Oklahoma (1912–1916), the U. S. Naval Academy (1916–18), University of Oklahoma (1918–19), University of Wyoming (1921–25), and Nebraska Wesleyan University (1926–31). During the period 1931 to 1939, Gossard was president of New Mexico Normal University (now New Mexico Highlands University), and during 1939 to 1950, he was dean of Eastern New Mexico College (now Eastern New Mexico University Eastern New Mexico University (ENMU or Eastern) is a public university with a main campus in Portales, New Mexico, and two associate degree-granting branches, one at Ruidoso and one at Roswell. ENMU is New Mexico's largest regional comprehensi ...). He worked for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gossard Perspector
In geometry the Gossard perspector (also called the Zeeman–Gossard perspector) is a special point associated with a plane triangle. It is a triangle center and it is designated as X(402) in Clark Kimberling's Encyclopedia of Triangle Centers. The point was named ''Gossard perspector'' by John Conway in 1998 in honour of Harry Clinton Gossard who discovered its existence in 1916. Later it was learned that the point had appeared in an article by Christopher Zeeman published during 1899 – 1902. From 2003 onwards the Encyclopedia of Triangle Centers has been referring to this point as ''Zeeman–Gossard perspector''. Definition Gossard triangle Let ''ABC'' be any triangle. Let the Euler line of triangle ''ABC'' meet the sidelines ''BC'', ''CA'' and ''AB'' of triangle ''ABC'' at ''D'', ''E'' and ''F'' respectively. Let ''AgBgCg'' be the triangle formed by the Euler lines of the triangles ''AEF'', ''BFD'' and ''CDE'', the vertex ''Ag'' being the intersection of the Euler lines ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler Line
In geometry, the Euler line, named after Leonhard Euler (), is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle. The concept of a triangle's Euler line extends to the Euler line of other shapes, such as the quadrilateral and the tetrahedron. Triangle centers on the Euler line Individual centers Euler showed in 1765 that in any triangle, the orthocenter, circumcenter and centroid are collinear. This property is also true for another triangle center, the nine-point center, although it had not been defined in Euler's time. In equilateral triangles, these four points coincide, but in any other triangle they are all distinct from each other, and the Euler line is determined by any two of them. Other notable points that lie on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Trilinear Coordinates
In geometry, the trilinear coordinates of a point relative to a given triangle describe the relative directed distances from the three sidelines of the triangle. Trilinear coordinates are an example of homogeneous coordinates. The ratio is the ratio of the perpendicular distances from the point to the sides (extended if necessary) opposite vertices and respectively; the ratio is the ratio of the perpendicular distances from the point to the sidelines opposite vertices and respectively; and likewise for and vertices and . In the diagram at right, the trilinear coordinates of the indicated interior point are the actual distances (, , ), or equivalently in ratio form, for any positive constant . If a point is on a sideline of the reference triangle, its corresponding trilinear coordinate is 0. If an exterior point is on the opposite side of a sideline from the interior of the triangle, its trilinear coordinate associated with that sideline is negative. It is impossible ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |