HOME
*





Golod–Shafarevich Theorem
In mathematics, the Golod–Shafarevich theorem was proved in 1964 by Evgeny Golod and Igor Shafarevich. It is a result in non-commutative homological algebra which solves the class field tower problem, by showing that class field towers can be infinite. The inequality Let ''A'' = ''K''⟨''x''1, ..., ''x''''n''⟩ be the free algebra over a field ''K'' in ''n'' = ''d'' + 1 non-commuting variables ''x''''i''. Let ''J'' be the 2-sided ideal of ''A'' generated by homogeneous elements ''f''''j'' of ''A'' of degree ''d''''j'' with :2 ≤ ''d''1 ≤ ''d''2 ≤ ... where ''d''''j'' tends to infinity. Let ''r''''i'' be the number of ''d''''j'' equal to ''i''. Let ''B''=''A''/''J'', a graded algebra. Let ''b''''j'' = dim ''B''''j''. The ''fundamental inequality'' of Golod and Shafarevich states that :: b_j\ge nb_ -\sum_^ b_ r_i. As a consequence: * ''B'' is infinite-dimensional if ''r''''i'' ≤ ''d''2/4 for all ''i'' Applications This result has important applicatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Number Field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a field that contains \mathbb and has finite dimension when considered as a vector space over The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory. This study reveals hidden structures behind usual rational numbers, by using algebraic methods. Definition Prerequisites The notion of algebraic number field relies on the concept of a field. A field consists of a set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. A prominent example of a field is the field of rational numbers, commonly denoted together with its usual operations of addition and multiplication. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jean-Pierre Serre
Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the inaugural Abel Prize in 2003. Biography Personal life Born in Bages, Pyrénées-Orientales, France, to pharmacist parents, Serre was educated at the Lycée de Nîmes and then from 1945 to 1948 at the École Normale Supérieure in Paris. He was awarded his doctorate from the Sorbonne in 1951. From 1948 to 1954 he held positions at the Centre National de la Recherche Scientifique in Paris. In 1956 he was elected professor at the Collège de France, a position he held until his retirement in 1994. His wife, Professor Josiane Heulot-Serre, was a chemist; she also was the director of the Ecole Normale Supérieure de Jeunes Filles. Their daughter is the former French diplomat, historian and writer Claudine Monteil. The French mathematician Denis S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Academic Press
Academic Press (AP) is an academic book publisher founded in 1941. It was acquired by Harcourt, Brace & World in 1969. Reed Elsevier bought Harcourt in 2000, and Academic Press is now an imprint of Elsevier. Academic Press publishes reference books, serials and online products in the subject areas of: * Communications engineering * Economics * Environmental science * Finance * Food science and nutrition * Geophysics * Life sciences * Mathematics and statistics * Neuroscience * Physical sciences * Psychology Well-known products include the ''Methods in Enzymology'' series and encyclopedias such as ''The International Encyclopedia of Public Health'' and the ''Encyclopedia of Neuroscience''. See also * Akademische Verlagsgesellschaft (AVG) — the German predecessor, founded in 1906 by Leo Jolowicz (1868–1940), the father of Walter Jolowicz Walter may refer to: People * Walter (name), both a surname and a given name * Little Walter, American blues harmonica player Marion Wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Russian Language
Russian (russian: русский язык, russkij jazyk, link=no, ) is an East Slavic languages, East Slavic language mainly spoken in Russia. It is the First language, native language of the Russians, and belongs to the Indo-European languages, Indo-European language family. It is one of four living East Slavic languages, and is also a part of the larger Balto-Slavic languages. Besides Russia itself, Russian is an official language in Belarus, Kazakhstan, and Kyrgyzstan, and is used widely as a lingua franca throughout Ukraine, the Caucasus, Central Asia, and to some extent in the Baltic states. It was the De facto#National languages, ''de facto'' language of the former Soviet Union,1977 Soviet Constitution, Constitution and Fundamental Law of the Union of Soviet Socialist Republics, 1977: Section II, Chapter 6, Article 36 and continues to be used in public life with varying proficiency in all of the post-Soviet states. Russian has over 258 million total speakers worldwide. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discriminant Of An Algebraic Number Field
In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers, and it regulates which primes are ramified. The discriminant is one of the most basic invariants of a number field, and occurs in several important analytic formulas such as the functional equation of the Dedekind zeta function of ''K'', and the analytic class number formula for ''K''. A theorem of Hermite states that there are only finitely many number fields of bounded discriminant, however determining this quantity is still an open problem, and the subject of current research. The discriminant of ''K'' can be referred to as the absolute discriminant of ''K'' to distinguish it from the relative discriminant of an extension ''K''/''L'' of number fields. The latter is an ideal in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century. Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic. Life Early life and edu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Infinite Tower Of Fields
In mathematics, a tower of fields is a sequence of field extensions : The name comes from such sequences often being written in the form :\begin\vdots \\ , \\ F_2 \\ , \\ F_1 \\ , \\ \ F_0. \end A tower of fields may be finite or infinite. Examples * is a finite tower with rational, real and complex numbers. *The sequence obtained by letting ''F''0 be the rational numbers Q, and letting ::F_ = F_n\!\left(2^\right) :(i.e. ''F''''n''+1 is obtained from ''F''''n'' by adjoining a 2''n'' th root of 2) is an infinite tower. *If ''p'' is a prime number the ''p'' th cyclotomic tower of Q is obtained by letting ''F''0 = Q and ''F''''n'' be the field obtained by adjoining to Q the ''pn'' th roots of unity. This tower is of fundamental importance in Iwasawa theory. *The Golod–Shafarevich theorem shows that there are infinite towers obtained by iterating the Hilbert class field construction to a number field. References *Section 4.1.4 of {{Citation , last ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tower Of Fields
In mathematics, a tower of fields is a sequence of field extensions : The name comes from such sequences often being written in the form :\begin\vdots \\ , \\ F_2 \\ , \\ F_1 \\ , \\ \ F_0. \end A tower of fields may be finite or infinite. Examples * is a finite tower with rational, real and complex numbers. *The sequence obtained by letting ''F''0 be the rational numbers Q, and letting ::F_ = F_n\!\left(2^\right) :(i.e. ''F''''n''+1 is obtained from ''F''''n'' by adjoining a 2''n'' th root of 2) is an infinite tower. *If ''p'' is a prime number the ''p'' th cyclotomic tower of Q is obtained by letting ''F''0 = Q and ''F''''n'' be the field obtained by adjoining to Q the ''pn'' th roots of unity. This tower is of fundamental importance in Iwasawa theory. *The Golod–Shafarevich theorem shows that there are infinite towers obtained by iterating the Hilbert class field construction to a number field. References *Section 4.1.4 of {{Citation , last ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert Class Field
In algebraic number theory, the Hilbert class field ''E'' of a number field ''K'' is the maximal abelian unramified extension of ''K''. Its degree over ''K'' equals the class number of ''K'' and the Galois group of ''E'' over ''K'' is canonically isomorphic to the ideal class group of ''K'' using Frobenius elements for prime ideals in ''K''. In this context, the Hilbert class field of ''K'' is not just unramified at the finite places (the classical ideal theoretic interpretation) but also at the infinite places of ''K''. That is, every real embedding of ''K'' extends to a real embedding of ''E'' (rather than to a complex embedding of ''E''). Examples *If the ring of integers of ''K'' is a unique factorization domain, in particular if K = \mathbb , then ''K'' is its own Hilbert class field. *Let K = \mathbb(\sqrt) of discriminant -15. The field L = \mathbb(\sqrt, \sqrt) has discriminant 225=(-15)^2 and so is an everywhere unramified extension of ''K'', and it is abelian. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]