HOME
*





Godeaux Surface
In mathematics, a Godeaux surface is one of the surfaces of general type introduced by Lucien Godeaux in 1931. Other surfaces constructed in a similar way with the same Hodge numbers are also sometimes called Godeaux surfaces. Surfaces with the same Hodge numbers (such as Barlow surfaces) are called numerical Godeaux surfaces. Construction The cyclic group of order 5 acts freely on the Fermat surface of points (''w : x : y : z'') in ''P''3 satisfying ''w''5 + ''x''5 + ''y''5 + ''z''5 = 0 by mapping (''w'' : ''x'' : ''y'' : ''z'') to (''w:ρx:ρ2y:ρ3z'') where ρ is a fifth root of 1. The quotient by this action is the original Godeaux surface. Invariants The fundamental group (of the original Godeaux surface) is cyclic of order 5. It has invariants q = 0, p_g = 0 like rational surfaces do, though it is not rational. The square of the first Chern class c_1^2 = 1 (and mor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Surfaces Of General Type
In algebraic geometry, a surface of general type is an algebraic surface with Kodaira dimension 2. Because of Algebraic geometry and analytic geometry#Chow.27s theorem, Chow's theorem any compact complex manifold of dimension 2 and with Kodaira dimension 2 will actually be an algebraic surface, and in some sense most surfaces are in this class. Classification Gieseker showed that there is a coarse moduli scheme for surfaces of general type; this means that for any fixed values of the Chern numbers c_1^2, c_2, there is a quasi-projective scheme classifying the surfaces of general type with those Chern numbers. It remains a very difficult problem to describe these schemes explicitly, and there are few pairs of Chern numbers for which this has been done (except when the scheme is empty). There are some indications that these schemes are in general too complicated to write down explicitly: the known upper bounds for the number of components are very large, some components can be red ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lucien Godeaux
Lucien Godeaux (1887–1975) was a prolific Belgian mathematician. His total of more than 1000 papers and books, 669 of which are found in Mathematical Reviews, made him one of the most published mathematicians. He was the sole author of all but one of his papers. He is best remembered for work in algebraic geometry. From Liège, he was attracted to the work of the Italian school of algebraic geometry by the work of one of its masters, Federigo Enriques. Godeaux went to Bologna to study with him. The Godeaux surface In mathematics, a Godeaux surface is one of the surfaces of general type introduced by Lucien Godeaux in 1931. Other surfaces constructed in a similar way with the same Hodge numbers are also sometimes called Godeaux surfaces. Surfaces with the sam ... is a construction of a special type, which has subsequently been much studied. Since 2007, the Belgian Mathematical Society (BMS) is organising a "Godeaux lecture" in his memory. Works * (1927) * (1931) * (1933) * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hodge Number
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic. The theory was developed by Hodge in the 1930s to study algebraic geometry, and it built on the work of Georges de Rham on de Rham cohomology. It has major applications in two settings: Riemannian manifolds and Kähler manifolds. Hodge's primary motivation, the study of complex projective varieties, is encompassed by the latter case. Hodge theory has become an important tool in algebraic geometry, particularly through its connection to the study of algebraic cycles. While Hodge theory is intrinsically dependent upon the real and complex numbers, it can be applied to questions in nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Barlow Surface
In mathematics, a Barlow surface is one of the complex surfaces introduced by . They are simply connected surfaces of general type with ''pg'' = 0. They are homeomorphic but not diffeomorphic to a projective plane blown up in 8 points. The Hodge diamond Homological mirror symmetry is a mathematical conjecture made by Maxim Kontsevich. It seeks a systematic mathematical explanation for a phenomenon called mirror symmetry first observed by physicists studying string theory. History In an address ... for the Barlow surfaces is: See also * Hodge theory References * * * * Algebraic surfaces Complex surfaces {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fermat Surface
In geometry, the Fermat cubic, named after Pierre de Fermat, is a surface defined by : x^3 + y^3 + z^3 = 1. \ Methods of algebraic geometry Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ... provide the following parameterization of Fermat's cubic: : x(s,t) = : y(s,t) = : z(s,t) = . In projective space the Fermat cubic is given by :w^3+x^3+y^3+z^3=0. The 27 lines lying on the Fermat cubic are easy to describe explicitly: they are the 9 lines of the form (''w'' : ''aw'' : ''y'' : ''by'') where ''a'' and ''b'' are fixed numbers with cube −1, and their 18 conjugates under permutations of coordinates. ::::''Real points of Fermat cubic surface.'' References * * Algebraic surfaces {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hodge Theory
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold ''M'' using partial differential equations. The key observation is that, given a Riemannian metric on ''M'', every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic. The theory was developed by Hodge in the 1930s to study algebraic geometry, and it built on the work of Georges de Rham on de Rham cohomology. It has major applications in two settings: Riemannian manifolds and Kähler manifolds. Hodge's primary motivation, the study of complex projective varieties, is encompassed by the latter case. Hodge theory has become an important tool in algebraic geometry, particularly through its connection to the study of algebraic cycles. While Hodge theory is intrinsically dependent upon the real and complex numbers, it can be applied to questions in nu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Surfaces
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, however, in the Italian school of algebraic geometry, and are up to 100 years old. Classification by the Kodaira dimension In the case of dimension one varieties are classified by only the topological genus, but dimension two, the difference between the arithmetic genus p_a and the geometric genus p_g turns to be important because we cannot distinguish birationally only the topological genus. Then we introduce the irregularity for the classification of them. A summary of the results (in det ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]