HOME
*





Gluon Field Strength Tensor
In theoretical particle physics, the gluon field strength tensor is a second order tensor field characterizing the gluon interaction between quarks. The strong interaction is one of the fundamental interactions of nature, and the quantum field theory (QFT) to describe it is called '' quantum chromodynamics'' (QCD). Quarks interact with each other by the strong force due to their color charge, mediated by gluons. Gluons themselves possess color charge and can mutually interact. The gluon field strength tensor is a rank 2 tensor field on the spacetime with values in the adjoint bundle of the chromodynamical SU(3) gauge group (see vector bundle for necessary definitions). Convention Throughout this article, Latin indices (typically ) take values 1, 2, ..., 8 for the eight gluon color charges, while Greek indices (typically ) take values 0 for timelike components and 1, 2, 3 for spacelike components of four-vectors and four-dimensional spacetime tensors. In all equations, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concerned wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Einstein Notation
In mathematics, especially the usage of linear algebra in Mathematical physics, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity. As part of mathematics it is a notational subset of Ricci calculus; however, it is often used in physics applications that do not distinguish between tangent and cotangent spaces. It was introduced to physics by Albert Einstein in 1916. Introduction Statement of convention According to this convention, when an index variable appears twice in a single term and is not otherwise defined (see Free and bound variables), it implies summation of that term over all the values of the index. So where the indices can range over the set , : y = \sum_^3 c_i x^i = c_1 x^1 + c_2 x^2 + c_3 x^3 is simplified by the convention to: : y = c_i x^i The upper indices are not exponents but are indices ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermitian Matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and : or in matrix form: A \text \quad \iff \quad A = \overline . Hermitian matrices can be understood as the complex extension of real symmetric matrices. If the conjugate transpose of a matrix A is denoted by A^\mathsf, then the Hermitian property can be written concisely as Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A^\mathsf = A^\dagger = A^\ast, although note that in quantum mechanics, A^\ast typically means the complex conjugate only, and not the conjugate transpose. Alternative characterizations Hermit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Principal Bundle
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equipped with # An action of G on P, analogous to (x, g)h = (x, gh) for a product space. # A projection onto X. For a product space, this is just the projection onto the first factor, (x,g) \mapsto x. Unlike a product space, principal bundles lack a preferred choice of identity cross-section; they have no preferred analog of (x,e). Likewise, there is not generally a projection onto G generalizing the projection onto the second factor, X \times G \to G that exists for the Cartesian product. They may also have a complicated topology that prevents them from being realized as a product space even if a number of arbitrary choices are made to try to define such a structure by defining it on smaller pieces of the space. A common example of a principal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connection (principal Bundle)
In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal ''G''-connection on a principal G-bundle ''P'' over a smooth manifold ''M'' is a particular type of connection which is compatible with the action of the group ''G''. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection. It gives rise to (Ehresmann) connections on any fiber bundle associated to ''P'' via the associated bundle construction. In particular, on any associated vector bundle the principal connection induces a covariant derivative, an operator that can differentiate sections of that bundle along tangent directions in the base manifold. Principal connections generalize to arbitrary principal bundles the concept of a linear connection on the f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spin (physics)
Spin is a conserved quantity carried by elementary particles, and thus by composite particles (hadrons) and atomic nucleus, atomic nuclei. Spin is one of two types of angular momentum in quantum mechanics, the other being ''orbital angular momentum''. The orbital angular momentum operator is the quantum-mechanical counterpart to the classical angular momentum of orbital revolution and appears when there is periodic structure to its wavefunction as the angle varies. For photons, spin is the quantum-mechanical counterpart of the Polarization (waves), polarization of light; for electrons, the spin has no classical counterpart. The existence of electron spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which silver atoms were observed to possess two possible discrete angular momenta despite having no orbital angular momentum. The existence of the electron spin can also be inferred theoretically from the spin–statistics theorem and from th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gluon Field
In theoretical physics, theoretical particle physics, the gluon field is a four-vector field characterizing the propagation of gluons in the strong interaction between quarks. It plays the same role in quantum chromodynamics as the electromagnetic four-potential in quantum electrodynamics the gluon field constructs the gluon field strength tensor. Throughout this article, Latin indices take values 1, 2, ..., 8 for the eight gluon color charges, while Greek indices take values 0 for timelike components and 1, 2, 3 for spacelike components of four-dimensional vectors and tensors in spacetime. Throughout all equations, the Einstein notation, summation convention is used on all color and tensor indices, unless explicitly stated otherwise. Introduction Gluons can have eight colour charges so there are eight fields, in contrast to photons which are neutral and so there is only one photon field. The gluon fields for each color charge each have a "timelike" component analogous to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Special Unitary Group
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1. The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case. The group operation is matrix multiplication. The special unitary group is a normal subgroup of the unitary group , consisting of all unitary matrices. As a compact classical group, is the group that preserves the standard inner product on \mathbb^n. It is itself a subgroup of the general linear group, \operatorname(n) \subset \operatorname(n) \subset \operatorname(n, \mathbb ). The groups find wide application in the Standard Model of particle physics, especially in the electroweak interaction and in quantum chromodynamics. The groups are important in quantum computing, as they represent the possible quantum logic gate operations in a quantum circuit with n qubits and thus 2^n basis states. (Alternatively, the more genera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adjoint Representation
In mathematics, the adjoint representation (or adjoint action) of a Lie group ''G'' is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if ''G'' is GL(n, \mathbb), the Lie group of real ''n''-by-''n'' invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible ''n''-by-''n'' matrix g to an endomorphism of the vector space of all linear transformations of \mathbb^n defined by: x \mapsto g x g^ . For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of ''G'' on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields. Definition Let ''G'' be a Lie group, and let :\Psi: G \to \operatorname(G) be the mapping , with Aut(''G'') the automorphism group of ''G'' and given by the inner automorphism (conjugation) :\Psi_g(h)= ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gell-Mann Matrices
The Gell-Mann matrices, developed by Murray Gell-Mann, are a set of eight linearly independent 3×3 traceless Hermitian matrices used in the study of the strong interaction in particle physics. They span the Lie algebra of the SU(3) group in the defining representation. Matrices : Properties These matrices are traceless, Hermitian, and obey the extra trace orthonormality relation (so they can generate unitary matrix group elements of SU(3) through exponentiation). These properties were chosen by Gell-Mann because they then naturally generalize the Pauli matrices for SU(2) to SU(3), which formed the basis for Gell-Mann's quark model. Gell-Mann's generalization further extends to general SU(''n''). For their connection to the standard basis of Lie algebras, see the Weyl–Cartan basis. Trace orthonormality In mathematics, orthonormality typically implies a norm which has a value of unity (1). Gell-Mann matrices, however, are normalized to a value of 2. Thus, the trace o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coupling Constant
In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the "charges" of the bodies (i.e. the electric charge for electrostatic and the mass for Newtonian gravity) divided by the distance squared, r^2, between the bodies; thus: G in F=G m_1 m_2/r^2 for Newtonian gravity and k_\text in F=k_\textq_1 q_2/r^2 for electrostatic. This description remains valid in modern physics for linear theories with static bodies and massless force carriers. A modern and more general definition uses the Lagrangian \mathcal (or equivalently the Hamiltonian \mathcal) of a system. Usually, \mathcal (or \mathcal) of a system describing an interaction can be separated into a ''kinetic part'' T and an ''interaction part'' V: \mathcal=T-V (or \mathcal=T+V). In field theory, V always contains 3 fields te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Imaginary Unit
The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of in a complex number is 2+3i. Imaginary numbers are an important mathematical concept; they extend the real number system \mathbb to the complex number system \mathbb, in which at least one root for every nonconstant polynomial exists (see Algebraic closure and Fundamental theorem of algebra). Here, the term "imaginary" is used because there is no real number having a negative square. There are two complex square roots of −1: and -i, just as there are two complex square roots of every real number other than zero (which has one double square root). In contexts in which use of the letter is ambiguous or problematic, the letter or the Greek \iota is sometimes used instead. For example, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]