Giant Component
In network theory, a giant component is a connected component of a given random graph that contains a significant fraction of the entire graph's vertices. More precisely, in graphs drawn randomly from a probability distribution over arbitrarily large graphs, a giant component is a connected component whose fraction of the overall number of vertices is bounded away from zero. In sufficiently dense graphs distributed according to the Erdős–Rényi model, a giant component exists with high probability. Giant component in Erdős–Rényi model Giant components are a prominent feature of the Erdős–Rényi model (ER) of random graphs, in which each possible edge connecting pairs of a given set of vertices is present, independently of the other edges, with probability . In this model, if p \le \frac for any constant \epsilon>0, then with high probability (in the limit as n goes to infinity) all connected components of the graph have size , and there is no giant component. However, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Critical 1000-vertex Erdős–Rényi–Gilbert Graph
Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine * Critical juncture, a discontinuous change studied in the social sciences. *Critical Software, a company specializing in mission and business critical information systems *Critical theory, a school of thought that critiques society and culture by applying knowledge from the social sciences and the humanities *Critically endangered, a risk status for wild species *Criticality (status), the condition of sustaining a nuclear chain reaction Art, entertainment, and media * ''Critical'' (novel), a medical thriller written by Robin Cook * ''Critical'' (TV series), a Sky 1 TV series * "Critical" (''Person of Interest''), an episode of the American television drama series ''Person of Interest'' *"Critical", a song by Abhi the Nomad from the album ''Abhi vs the Universe'', 2021 *"Critical", a 1999 single by Zion I from the album '' Mind over Matter'' People *Cr1TiKa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Network Theory
In mathematics, computer science, and network science, network theory is a part of graph theory. It defines networks as Graph (discrete mathematics), graphs where the vertices or edges possess attributes. Network theory analyses these networks over the symmetric relations or directed graph, asymmetric relations between their (discrete) components. Network theory has applications in many disciplines, including statistical physics, particle physics, computer science, electrical engineering, biology, archaeology, linguistics, economics, finance, operations research, climatology, ecology, public health, sociology, psychology, and neuroscience. Applications of network theory include Logistics, logistical networks, the World Wide Web, Internet, gene regulatory networks, metabolic networks, social networks, epistemological networks, etc.; see List of network theory topics for more examples. Euler's solution of the Seven Bridges of Königsberg, Seven Bridges of Königsberg problem is c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Connected Component (graph Theory)
In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components. The number of components in a given graph is an important graph invariant, and is closely related to invariants of matroids, topological spaces, and matrices. In random graphs, a frequently occurring phenomenon is the incidence of a giant component, one component that is significantly larger than the others; and of a percolation threshold, an edge probability above which a giant component exists and below which it does not. The components of a graph can be constructed in linear time, and a special case of the problem, connected-component labeling, is a basic technique in image analysis. Dy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Random Graph
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of ''typical'' graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, ''random graph'' refers almost exclusively to the Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a ''random graph''. Models A random graph is obtained by starting with a set of ''n'' isolated vertices and adding successive edges between them at random. The a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vertex (graph Theory)
In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph consists of a set of vertices and a set of arcs (ordered pairs of vertices). In a diagram of a graph, a vertex is usually represented by a circle with a label, and an edge is represented by a line or arrow extending from one vertex to another. From the point of view of graph theory, vertices are treated as featureless and indivisible objects, although they may have additional structure depending on the application from which the graph arises; for instance, a semantic network is a graph in which the vertices represent concepts or classes of objects. The two vertices forming an edge are said to be the endpoints of this edge, and the edge is said to be incident to the vertices. A vertex ''w'' is said to be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Erdős–Rényi Model
In the mathematical field of graph theory, the Erdős–Rényi model refers to one of two closely related models for generating random graphs or the evolution of a random network. These models are named after Hungarians, Hungarian mathematicians Paul Erdős and Alfréd Rényi, who introduced one of the models in 1959. Edgar Gilbert introduced the other model contemporaneously with and independently of Erdős and Rényi. In the model of Erdős and Rényi, all graphs on a fixed vertex set with a fixed number of edges are equally likely. In the model introduced by Gilbert, also called the Erdős–Rényi–Gilbert model, each edge has a fixed probability of being present or absent, statistical independence, independently of the other edges. These models can be used in the probabilistic method to prove the existence of graphs satisfying various properties, or to provide a rigorous definition of what it means for a property to hold for almost all graphs. Definition There are two clo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
With High Probability
In mathematics, an event that occurs with high probability (often shortened to w.h.p. or WHP) is one whose probability depends on a certain number ''n'' and goes to 1 as ''n'' goes to infinity, i.e. the probability of the event occurring can be made as close to 1 as desired by making ''n'' big enough. Applications The term WHP is especially used in computer science, in the analysis of probabilistic algorithms. For example, consider a certain probabilistic algorithm on a graph with ''n'' nodes. If the probability that the algorithm returns the correct answer is 1-1/n, then when the number of nodes is very large, the algorithm is correct with a probability that is very near 1. This fact is expressed shortly by saying that the algorithm is correct WHP. Some examples where this term is used are: * Miller–Rabin primality test: a probabilistic algorithm for testing whether a given number ''n'' is prime or composite. If ''n'' is composite, the test will detect ''n'' as composite WHP. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Phase Transition
In physics, chemistry, and other related fields like biology, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic State of matter, states of matter: solid, liquid, and gas, and in rare cases, plasma (physics), plasma. A phase of a thermodynamic system and the states of matter have uniform physical property, physical properties. During a phase transition of a given medium, certain properties of the medium change as a result of the change of external conditions, such as temperature or pressure. This can be a discontinuous change; for example, a liquid may become gas upon heating to its boiling point, resulting in an abrupt change in volume. The identification of the external conditions at which a transformation occurs defines the phase transition point. Types of phase transition States of matter Phase transitions commonly refer to when a substance tran ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Empty Graph
In the mathematical field of graph theory, the term "null graph" may refer either to the order-zero graph, or alternatively, to any edgeless graph (the latter is sometimes called an "empty graph"). Order-zero graph The order-zero graph, , is the unique graph having no vertices (hence its order is zero). It follows that also has no edges. Thus the null graph is a regular graph of degree zero. Some authors exclude from consideration as a graph (either by definition, or more simply as a matter of convenience). Whether including as a valid graph is useful depends on context. On the positive side, follows naturally from the usual set-theoretic definitions of a graph (it is the ordered pair for which the vertex and edge sets, and , are both empty), in proofs it serves as a natural base case for mathematical induction, and similarly, in recursively defined data structures is useful for defining the base case for recursion (by treating the null tree as the child of miss ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Coupon Collector's Problem
In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are ''n'' different types of coupons, what is the probability that more than ''t'' boxes need to be bought to collect all ''n'' coupons? An alternative statement is: given ''n'' coupons, how many coupons do you expect you need to draw with replacement before having drawn each coupon at least once? The mathematical analysis of the problem reveals that the expected number of trials needed grows as \Theta(n\log(n)). For example, when ''n'' = 50 it takes about 225E(50) = 50(1 + 1/2 + 1/3 + ... + 1/50) = 224.9603, the expected number of trials to collect all 50 coupons. The approximation n\log n+\gamma n+1/2 for this expected number gives in this case 50\log 50+50\gamma+1/2 \approx 195.6011+28.8608+0.5\approx 224.9619. trials on ave ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Degree Distribution
In the study of graphs and networks, the degree of a node in a network is the number of connections it has to other nodes and the degree distribution is the probability distribution of these degrees over the whole network. Definition The degree of a node in a network (sometimes referred to incorrectly as the connectivity) is the number of connections or edges the node has to other nodes. If a network is directed, meaning that edges point in one direction from one node to another node, then nodes have two different degrees, the in-degree, which is the number of incoming edges, and the out-degree, which is the number of outgoing edges. The degree distribution ''P''(''k'') of a network is then defined to be the fraction of nodes in the network with degree ''k''. Thus if there are ''n'' nodes in total in a network and ''n''''k'' of them have degree ''k'', we have :P(k) = \frac. The same information is also sometimes presented in the form of a ''cumulative degree distribution' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Moment (mathematics)
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph. If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia. If the function is a probability distribution, then the first moment is the expected value, the second central moment is the variance, the third standardized moment is the skewness, and the fourth standardized moment is the kurtosis. For a distribution of mass or probability on a bounded interval, the collection of all the moments (of all orders, from to ) uniquely determines the distribution ( Hausdorff moment problem). The same is not true on unbounded intervals ( Hamburger moment problem). In the mid-nineteenth century, Pafnuty Chebyshev became the first person to think systematically in terms of the moments of random variables. Significance of th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |