HOME
*





Generalized Matrix T-distribution
In statistics, the matrix ''t''-distribution (or matrix variate ''t''-distribution) is the generalization of the multivariate ''t''-distribution from vectors to matrices. The matrix ''t''-distribution shares the same relationship with the multivariate ''t''-distribution that the matrix normal distribution shares with the multivariate normal distribution. For example, the matrix ''t''-distribution is the compound distribution that results from sampling from a matrix normal distribution having sampled the covariance matrix of the matrix normal from an inverse Wishart distribution. In a Bayesian analysis of a multivariate linear regression model based on the matrix normal distribution, the matrix ''t''-distribution is the posterior predictive distribution. Definition For a matrix ''t''-distribution, the probability density function at the point \mathbf of an n\times p space is : f(\mathbf ; \nu,\mathbf,\boldsymbol\Sigma, \boldsymbol\Omega) = K \times \left, \mathbf_n + \boldsy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Location Parameter
In geography, location or place are used to denote a region (point, line, or area) on Earth's surface or elsewhere. The term ''location'' generally implies a higher degree of certainty than ''place'', the latter often indicating an entity with an ambiguous boundary, relying more on human or social attributes of place identity and sense of place than on geometry. Types Locality A locality, settlement, or populated place is likely to have a well-defined name but a boundary that is not well defined varies by context. London, for instance, has a legal boundary, but this is unlikely to completely match with general usage. An area within a town, such as Covent Garden in London, also almost always has some ambiguity as to its extent. In geography, location is considered to be more precise than "place". Relative location A relative location, or situation, is described as a displacement from another site. An example is "3 miles northwest of Seattle". Absolute location An absolute locati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probability Density Function
In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a ''relative likelihood'' that the value of the random variable would be close to that sample. Probability density is the probability per unit length, in other words, while the ''absolute likelihood'' for a continuous random variable to take on any particular value is 0 (since there is an infinite set of possible values to begin with), the value of the PDF at two different samples can be used to infer, in any particular draw of the random variable, how much more likely it is that the random variable would be close to one sample compared to the other sample. In a more precise sense, the PDF is used to specify the probability of the random variable falling ''within a particular range of values'', as opposed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Normal Distribution
In statistics, the matrix normal distribution or matrix Gaussian distribution is a probability distribution that is a generalization of the multivariate normal distribution to matrix-valued random variables. Definition The probability density function for the random matrix X (''n'' × ''p'') that follows the matrix normal distribution \mathcal_(\mathbf, \mathbf, \mathbf) has the form: : p(\mathbf\mid\mathbf, \mathbf, \mathbf) = \frac where \mathrm denotes trace and M is ''n'' × ''p'', U is ''n'' × ''n'' and V is ''p'' × ''p'', and the density is understood as the probability density function with respect to the standard Lebesgue measure in \mathbb^, i.e.: the measure corresponding to integration with respect to dx_ dx_\dots dx_ dx_\dots dx_\dots dx_. The matrix normal is related to the multivariate normal distribution in the following way: :\mathbf \sim \mathcal_(\mathbf, \mathbf, \mathbf), if and only if :\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multivariate T-distribution
In statistics, the multivariate ''t''-distribution (or multivariate Student distribution) is a multivariate probability distribution. It is a generalization to random vectors of the Student's ''t''-distribution, which is a distribution applicable to univariate random variables. While the case of a random matrix could be treated within this structure, the matrix ''t''-distribution is distinct and makes particular use of the matrix structure. Definition One common method of construction of a multivariate ''t''-distribution, for the case of p dimensions, is based on the observation that if \mathbf y and u are independent and distributed as N(,) and \chi^2_\nu (i.e. multivariate normal and chi-squared distributions) respectively, the matrix \mathbf\, is a ''p'' × ''p'' matrix, and /\sqrt = -, then has the density : \frac\left +\frac(-)^T^(-)\right and is said to be distributed as a multivariate ''t''-distribution with parameters ,,\nu. Note that \mathbf\Sigma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bessel Function
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary complex number \alpha, the ''order'' of the Bessel function. Although \alpha and -\alpha produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of \alpha. The most important cases are when \alpha is an integer or half-integer. Bessel functions for integer \alpha are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. Spherical Bessel functions with half-integer \alpha are obtained when the Helmholtz equation is solved in spherical coordinates. Applications of Bessel functions The Bessel function is a generali ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nonsingular Matrices
In linear algebra, an -by- square matrix is called invertible (also nonsingular or nondegenerate), if there exists an -by- square matrix such that :\mathbf = \mathbf = \mathbf_n \ where denotes the -by- identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix is uniquely determined by , and is called the (multiplicative) ''inverse'' of , denoted by . Matrix inversion is the process of finding the matrix that satisfies the prior equation for a given invertible matrix . A square matrix that is ''not'' invertible is called singular or degenerate. A square matrix is singular if and only if its determinant is zero. Singular matrices are rare in the sense that if a square matrix's entries are randomly selected from any finite region on the number line or complex plane, the probability that the matrix is singular is 0, that is, it will "almost never" be singular. Non-square matrices (-by- matrices for which ) do not hav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Determinant
In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants (the preceding property is a corollary of this one). The determinant of a matrix is denoted , , or . The determinant of a matrix is :\begin a & b\\c & d \end=ad-bc, and the determinant of a matrix is : \begin a & b & c \\ d & e & f \\ g & h & i \end= aei + bfg + cdh - ceg - bdi - afh. The determinant of a matrix can be defined in several equivalent ways. Leibniz formula expresses the determinant as a sum of signed products of matrix entries such that each summand is the product of different entries, and the number of these summands is n!, the factorial of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Multivariate Gamma Distribution
In statistics, the inverse matrix gamma distribution is a generalization of the inverse gamma distribution to positive-definite matrices. It is a more general version of the inverse Wishart distribution, and is used similarly, e.g. as the conjugate prior of the covariance matrix of a multivariate normal distribution or matrix normal distribution. The compound distribution resulting from compounding a matrix normal with an inverse matrix gamma prior over the covariance matrix is a generalized matrix t-distribution. This reduces to the inverse Wishart distribution with \nu degrees of freedom when \beta=2, \alpha=\frac. See also * inverse Wishart distribution. * matrix gamma distribution. * matrix normal distribution. * matrix t-distribution. * Wishart distribution In statistics, the Wishart distribution is a generalization to multiple dimensions of the gamma distribution. It is named in honor of John Wishart, who first formulated the distribution in 1928. It is a family ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mixture Density
In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized. The underlying random variables may be random real numbers, or they may be random vectors (each having the same dimension), in which case the mixture distribution is a multivariate distribution. In cases where each of the underlying random variables is continuous, the outcome variable will also be continuous and its probability density function is sometimes referred to as a mixture density. The cumulative distribution function (and the probability density function if it exists) can be expressed as a convex combination (i.e. a weighted sum, with non-negative weights that sum to 1) of other distribution functions and density func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scale Parameter
In probability theory and statistics, a scale parameter is a special kind of numerical parameter of a parametric family of probability distributions. The larger the scale parameter, the more spread out the distribution. Definition If a family of probability distributions is such that there is a parameter ''s'' (and other parameters ''θ'') for which the cumulative distribution function satisfies :F(x;s,\theta) = F(x/s;1,\theta), \! then ''s'' is called a scale parameter, since its value determines the " scale" or statistical dispersion of the probability distribution. If ''s'' is large, then the distribution will be more spread out; if ''s'' is small then it will be more concentrated. If the probability density exists for all values of the complete parameter set, then the density (as a function of the scale parameter only) satisfies :f_s(x) = f(x/s)/s, \! where ''f'' is the density of a standardized version of the density, i.e. f(x) \equiv f_(x). An estimator of a scale ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Shape Parameter
In probability theory and statistics, a shape parameter (also known as form parameter) is a kind of numerical parameter of a parametric family of probability distributionsEveritt B.S. (2002) Cambridge Dictionary of Statistics. 2nd Edition. CUP. that is neither a location parameter nor a scale parameter (nor a function of these, such as a rate parameter). Such a parameter must affect the ''shape'' of a distribution rather than simply shifting it (as a location parameter does) or stretching/shrinking it (as a scale parameter does). For example, "peakedness" refers to how round the main peak is. Estimation Many estimators measure location or scale; however, estimators for shape parameters also exist. Most simply, they can be estimated in terms of the higher moments, using the method of moments, as in the '' skewness'' (3rd moment) or '' kurtosis'' (4th moment), if the higher moments are defined and finite. Estimators of shape often involve higher-order statistics (non-linear fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Characteristic Function (probability Theory)
In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables. In addition to univariate distributions, characteristic functions can be defined for vector- or matrix-valued random variables, and can also be extended to more generic cases. The characteristic function always exists when treated as a function of a real-valued argument, unlike the moment-generating function. There are relations between the behavior of the characteristic func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]